题目列表(包括答案和解析)
(本小题满分12分)
已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点.
(1)根据条件求出b和k满足的关系式;
(2)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;
(3)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.
(本小题满分12分)
已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点.
(Ⅰ)根据条件求出b和k满足的关系式;
(Ⅱ)向量在向量方向的投影是p,当(×)p2=1时,求直线l的方程;
(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.
(本小题满分12分)
已知双曲线过点P,它的渐近线方程为
(1)求双曲线的标准方程;
(2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.
(本小题满分12分)
已知椭圆与双曲线有共同的焦点F1、F2,设它们在第一象限的交点为P,且
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线,与椭圆交于不同的两点A、B,点Q满足?若存在,求出的取值范围;若不存在,说明理由。
(本小题满分12分)
已知椭圆与双曲线有共同的焦点F1、F2,设它们在第一象限的交点为P,且
(1)求椭圆的方程;
(2)已知N(0,-1),对于(1)中的椭圆,是否存在斜率为的直线,与椭圆交于不同的两点A、B,点Q满足?若存在,求出的取值范围;若不存在,说明理由。
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
B
C
A
B
A
C
B
B
理D 文B
D
理D 文C
二.填空题
13.(理)-1;(文) (-1,1)∪(2,+∞). 14. 90.
15. ; 16. (理)x+2y-3=0; (文).
三.解答题
17. 解:(I)平移以后得
,又关于对称
, ,
当且仅当时取最大值,
所以,取得最大值时的集合为.…………6分
(II)的最小正周期为; ,
,在[上的值域为.…………12分
18.解:(I)当n∈N时有:=2-3n, ∴=2-3(n+1),
两式相减得:=2-2-3 ∴=2+3。 ……3分
∴+3=2(+3)。
又==2-3, ∴=3, +3=6≠0 ……4分
∴数列{+3}是首项6,公比为2的等比数列.从而c=3. ……6分
(II)由(1)知:+3=, ∴=-3. ………8分
(Ⅲ)假设数列{}中是否存在三项,,,(r<s<t),它们可以构成等差数列,
∵<<, ∴只能是+=2,
∴(-3)+(-3)=2(-3)
即+=.∴1+=.
∵r<s<t,r、s、t均为正整数,∴式左边为奇数右边为偶数,不可能成立.
因此数列{}中不存在可以构成等差数列的三项. ………12分
19. (理)解:设从甲袋中取出个白球的事件为,从乙袋中取出个白球的事件为其中=0,1,2,则,.
(I),,
所以………………………..6分
(II)分布列是
0
1
2
3
4
P
……………12分
(文) 19.(I)三人恰好买到同一只股票的概率。 ……4分
(II)解法一:三人中恰好有两个买到同一只股票的概率.……9分
由(I)知,三人恰好买到同一只股票的概率为,所以三人中至少有两人买到同一只股票的概率。 ……12分
|