A.有可能使气体回到原来状态.且W1<W2 B.有可能使气体回到原来状态.且W1=W2 C.有可能使气体回到原来状态.且W1>W2 D.上面A.B.C三种说法都不可能实现 查看更多

 

题目列表(包括答案和解析)

第Ⅰ卷(选择题 共31分)

一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.

1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]

A.安培首先发现了电流的磁效应

B.伽利略认为自由落体运动是速度随位移均匀变化的运动

C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小

D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的

2.如图为一种主动式光控报警器原理图,图中R1R2为光敏电阻,R3R4为定值电阻.当射向光敏电阻R1R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是

A.与门                  B.或门               C.或非门                  D.与非门

 


3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时

A.灯L变亮                                    B.各个电表读数均变大

C.因为U1不变,所以P1不变                              D.P1变大,且始终有P1= P2

4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是

A.在B点时,小球对圆轨道的压力为零

B.BC过程,小球做匀变速运动

C.在A点时,小球对圆轨道压力大于其重力

D.AB过程,小球水平方向的加速度先增加后减小

5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是

A.若m2向下运动,则斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上运动,则轻绳的拉力一定大于m2g

二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.

6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2 周期为T2.已知万有引力常量为G,则根据题中给定条件

A.能求出木星的质量

B.能求出木星与卫星间的万有引力

C.能求出太阳与木星间的万有引力

D.可以断定

7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是

A.OAB轨迹为半圆

B.小球运动至最低点A时速度最大,且沿水平方向

C.小球在整个运动过程中机械能守恒

D.小球在A点时受到的洛伦兹力与重力大小相等

8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是

A.上述过程中,F做功大小为            

B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长

C.其他条件不变的情况下,M越大,s越小

D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多

9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中

A.在O1点粒子加速度方向向左

B.从O1O2过程粒子电势能一直增加

C.轴线上O1点右侧存在一点,粒子在该点动能最小

D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1O2连线中点对称

 


第Ⅱ卷(非选择题 共89分)

三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.

必做题

10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.

(1)实验过程中,电火花计时器应接在  ▲  (选填“直流”或“交流”)电源上.调整定滑轮高度,使  ▲ 

(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=  ▲ 

(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=  ▲  m/s2(保留两位有效数字).

 


11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:

A.电流表G1(2mA  100Ω)             B.电流表G2(1mA  内阻未知)

C.电阻箱R1(0~999.9Ω)                      D.电阻箱R2(0~9999Ω)

E.滑动变阻器R3(0~10Ω  1A)         F.滑动变阻器R4(0~1000Ω  10mA)

G.定值电阻R0(800Ω  0.1A)               H.待测电池

I.导线、电键若干

(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根据测量数据,请在图乙坐标中描点作出I1I2图线.由图得到电流表G2的内阻等于

  ▲  Ω.

(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中  ▲  ,电阻箱②选  ▲  (均填写器材代号).

(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.

 


12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

(1)下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修模块3-4)(12分)

(1)下列说法中正确的是  ▲ 

A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理

B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象

C.太阳光是偏振光

D.为了有效地发射电磁波,应该采用长波发射

(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8cc为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L  ▲  L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1  ▲  t0(均选填“>”、“ =” 或“<”).

(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.

①求波在介质中的传播速度;

②求x=4m的质点在0.14s内运动的路程.

   C.(选修模块3-5)(12分)

(1)下列说法中正确的是  ▲ 

A.康普顿效应进一步证实了光的波动特性

B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的

C.经典物理学不能解释原子的稳定性和原子光谱的分立特征

D.天然放射性元素衰变的快慢与化学、物理状态有关

(2)是不稳定的,能自发的发生衰变.

①完成衰变反应方程    ▲ 

衰变为,经过  ▲  α衰变,  ▲  β衰变.

(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.

α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

②求此过程中释放的核能.

四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kvk为已知的常数).则

(1)氢气球受到的浮力为多大?

(2)绳断裂瞬间,氢气球加速度为多大?

(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).

 


14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.

(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;

(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;

(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间Tcd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t

      

15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心OMN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e

(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?

(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

(3)在(2)的情况下,求金属圆筒的发热功率.

 


查看答案和解析>>

如图中所示为一带活塞的汽缸,缸内盛有气体,缸外恒温环境,汽缸壁是导热的。现将活塞向外移动一段距离,在此过程中气体吸热,对外做功,此功用W1表示。然后设法将汽缸及活塞绝热,推动活塞压缩气体,此过程中外界对气体做功用W2表示,则

   

A.有可能使气体回到原来状态,且W1<W2

B.有可能使气体回到原来状态,且W1=W2

C.有可能使气体回到原来状态,且W1>W2

D.上面A、B、C三种说法都不可能实现

查看答案和解析>>

如图所示为一带活塞的气缸,缸内盛有气体,缸外为恒温环境,气缸壁是导热的,现令活塞向外移动一段距离,在此过程中气体吸热,对外做功,此功用W1 表示,然后设法将气缸壁及活塞绝热,推动活塞压缩气体,此过程中外界对气体做功用W2 表示,则
[     ]
A.有可能使气体回到原来状态,且W1< W 
B.有可能使气体回到原来状态,且W1= W2  
C.有可能使气体回到原来状态,且W1> W2  
D.不可能使气体回到原来状态,且W1< W2

查看答案和解析>>

精英家教网如图中所示为一带活塞的汽缸,缸内盛有气体,缸外恒温环境,汽缸壁是导热的.现将塞向外移动一段距离,在此过程中气体吸热,对外做功,此功用W1表示.然后设法将汽缸及活塞绝热,推动活塞压缩气体,此过程中外界对气体做功用W2表示,则(  )
A、有可能使气体回到原来状态,且W1<W2B、有可能使气体回到原来状态,且W1=W2C、有可能使气体回到原来状态,且W1>W2D、上面A、B、C三种说法都不可能实现

查看答案和解析>>

右图所示为一带活塞的气缸,缸内盛有气体,缸外为恒温环境,气缸壁是导热的.现令活塞向外移动一段距离,在此过程中气体吸热,对外做功.用W1表示.然后设法将气缸壁及活塞绝热,推动活塞压缩气体,使活塞回到原来位置,此过程外界对气体做功用W2表示.则

A.有可能使气体回到原来状态,且W1<W2
B.有可能使气体回到原来状态,且W1>W2
C.不可能使气体回到原来状态,但W1=W2
D.上面A、B、C三种说法都不可能实现

查看答案和解析>>

 

1.答案:C    布朗运动反映了悬浮小颗粒外部液体分子在不停地做无规则的热运动,A错;分子间的作用力随距离的增大而减小,B错;C是热力学第三定律内容,正确;热量不能自发地由低温物体传给高温物体,但在消耗其他形式能量时可以做到,因此D错.

2.答案:AC   本题考查了分子热运动的基础知识和基础的人文知识,形式新颖活泼. “天光云影共徘徊”是朱熹《观书有感》诗中“半亩方塘一鉴开,天光云影共徘徊.问渠那得清如许,为有源头活水来”的一句,是光的反射现象;“隔墙花影动,疑是玉人来”是王实甫的《西厢记》中的一句,是月光成影的光学现象.

3.答案:BD   封闭气体的体积不变,温度升高时,气体分子的平均动能增大,压强增大.而分子的密集程度不变,所以气体分子的密度不变.压强增大,每秒撞击单位面积器壁的气体分子数增多.

4.答案:BCD  A选项是由于浮力和重力相平衡,其余的都与表面张力有关.

5.答案:D     根据理想气体温度、压强和体积之间的关系可知,一定质量的理想气体,在温度不变的条件下,分子的平均动能不变,压强增大,体积一定减小,气体密度增大,C错,D正确;由体积减小可知外界对气体做功,B错;由热力学第一定律可知,外界对气体做功而内能不变,可判断气体向外界放热,A错.

6.答案:D   由于汽缸及活塞绝热,所以外界对气体做功,气体内能必然增大,温度升高,即不可能回到原来状态,D选项正确.

7.答案:ACD    气缸整体是绝热的,当移动活塞P时,有外力对系统做功,根据热力学第一定律,系统的内能要增加,因此从整体上讲,甲、乙的内能都要增加,但外力并没有直接对甲做功,甲的内能之所以增加是因为吸收了热量,而乙放出热量,所以ACD正确.

8.答案:B   乙分子从ab,再到c的过程中,分子之间均表现为引力,所以乙分子始终做加速运动,且到达c点时速度最大,故A错误,B正确,C错误.乙分子由bc的过程,分子引力做正功,故两分子间的分子势能减小,而从c到d的过程分子间为斥力,做负功,分子间的势能增加,故D错误.

9.答案:AB    根据热力学第一定律ㄓU=Q+W可知,对气体加热,气体的内能不一定增加,则选项A正确;绝对零度是低温物体的极限,不可能达到,则选项B正确;温度是物体分子平均动能大小的标志,物体温度升高,物体中分子热运动加剧,其分子平均动能增加,但不是每个分子的平均动能都增加,则选项C错误;理想气体中分子间无相互作用力,压缩封闭在气缸中一定质量的理想气体,难度越来越大是因为压强增大的原因,则选项D错误.

10.答案:D  当液面由a位置上升到b位置时,管内气体体积减小,表明温度降低,管内气体的压强减小,管内气体分子的平均动能减小,气体内能减小.

11.(8分)答案:(1)115~120都对  (2分)(2)都对(2分)(3)让油膜在水面上形成单分子油膜(2分)(4)(2分)

12.答案:(1)还需要用刻度尺.(3分)

   (2)实验的主要步骤是:将细玻璃管水平放置,用刻度尺量出水银柱长h(cm)和封闭空气柱长l1(cm);将细玻璃管开口向上竖直放置,用刻度尺量出封闭空气柱长l2(cm).(3分)

   (3)设玻璃管的截面积为S,两种情况下空气的状态参量分别为p1=p0V1=l1Sp2=p0+h(mmHg),V2=l2S

由玻意耳定律p0l1S=(p0+h)l2S

得大气压为p0=l1h/(l1l2). (3分)

13.解析:空气柱在体外时的状态参量为p1=760mmHg,V1=5mL,T1=300K(3分)

空气柱在体内在收缩压时的状态参量为p2=120mmHg,T2=310K(2分)

由理想气体状态方程得,空气柱在收缩压下的体积为V2=p1V1T2/T1p2=32.17mL(3分)

空气柱在体内扩张压时的状态参量为p3=80mmHg,T3=310K(3分)

由理想气体状态方程得,空气柱在扩张压下的体积为V3=p1V1T3/T1p3=49.1mL(3分)

14.解析:设球在第一次运动到最低点时的速度为v,则根据牛顿第二定律得, (5分)

根据热力学第一定律和能量守恒定律可知,球由静止释放到第一次运动到最低点的过程中汽缸中的气体增加的内能ㄓE为(5分)

联立两式、代入数值得ㄓE=228J. (4分)

15.解析:(1)能(2分)

因为大气压强是由大气重力产生的,由(2分)

(2分)

把查阅得到的数据代入上式得,kg(2分)

大气层空气的分子数为个(2分)

(2)可求出液化后空气的体积为:m3(2分)

设大气液化后液体水分布在地球表面上时,地球半径增加h,则有

,考虑到h远小于R,忽略h的二次项和三次项得,

m. (2分)

16.解析:(1)在活塞上方倒沙的过程中温度保持不变,对气体,由玻意耳定律得,p0V0=p1V1,代入数据,得p1=V0p0/V1=2.0×10-3×1.0×105/1.0×10-3Pa=2.0×105Pa(5分)

在缓慢加热到127℃的过程中,气体压强保持不 

变,由盖?吕萨克定律得,V1/T0=V2/T2

V2=T2V1/T0=(273+127)×1.0×10-3/273m3

=1.47×103m3(5分)

   (2)在整个物理过程中画在p―V图上,

如图所示. (6分)

17.解析:每人每天所吸1atm净化空气的体积为

V=(16×60×24)×500mL=1.152×104L,(4分)

由玻意耳定律可知,每桶10atm的净化空气转化为1atm时的体积为V/=10×20/1L=200L(4分)

故每人每天需要净化空气的桶数为n=V/V/=1.152×104/200=57.6≈58桶(4分)

由此可见,这个方案并不现实. (4分)

18.解析:因活塞处于静止状态,由平衡条件得,(p0p1)S=(p2p2)S

代入数据得p3=1.0×105Pa(2分)

B内左侧气体有p2l2S=pl2/S②(2分)

B内右侧气体有p3l3S=pl3/S③(2分)

l2+l3=l2/+l3/=(16+8)cm=24cm④(2分)

联立②③④得l3/=6cm(2分)

活塞右移ㄓx=l3l3/=2cm,当B内两侧压强相等时,

对活塞由平衡条件得,(p1/p0)S=(p-p0)S

解得p1/=p0=1.0×105Pa(2分)

A内气体由理想气体的状态方程得,p1l1S/T1= p1/l1/S/T1/,其中l1/=(30+2)cm=32cm

即有0.5×30S/300=1×32S/T1/

解得T1/=640K(2分)

A内温度升高T=T1/T1=340K(2分)

 


同步练习册答案