∴.即数列{an}是等比树立∵a1=2.∴an=2n ∵点P(bn.bn+1)在直线x-y+2=0上.∴bn-bn+1+2=0. ∴bn+1-bn=2.即数列{bn}是等差数列.又b1=1.∴bn=2n-1. ???8分 (3)∵cn=(2n-1)2n ∴Tn=a1b1+ a2b2+????anbn=1×2+3×22+5×23+????+(2n-1)2n. ∴2Tn=1×22+3×23+????+(2n-3)2n+(2n-1)2n+1 因此:-Tn=1×2+(2×22+2×23+???+2×2n)-(2n-1)2n+1. 即:-Tn=1×2+(23+24+????+2n+1)-(2n-1)2n+1. ∴Tn=(2n-3)2n+1+6 ??14分 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项和为Sn=b×2n+a(a0,b0),若数列{an}是等比数例,则a、b应满足的条件为(   )

(A)a-b=0   (B)a-b0   (C)a+b=0   (D)a+b0

 

查看答案和解析>>

定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{an}是等积数且a1=2,公积为6,则a18=
6
6

查看答案和解析>>

定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{an}是等积数且a1=2,公积为6,则a18=   

查看答案和解析>>

(2012•深圳一模)已知各项为实数的数列{an}是等比数列,且a1=2,a5+a7=8(a2+a4).数列{bn}满足:对任意正整数n,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求数列{an}与数列{bn}的通项公式;
(2)在数列{an}的任意相邻两项ak与ak+1之间插入k个(-1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}的前2012项之和.

查看答案和解析>>

已知各项为实数的数列{an}是等比数列,且a1=2,a5+a7=8(a2+a4).数列{bn}满足:对任意正整数n,有数学公式
(1)求数列{an}与数列{bn}的通项公式;
(2)在数列{an}的任意相邻两项ak与ak+1之间插入k个(-1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}的前2012项之和.

查看答案和解析>>


同步练习册答案