由题得:. 2分 查看更多

 

题目列表(包括答案和解析)

(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。

已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

   (2)=  n=15取得最小值

查看答案和解析>>

(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。

已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

   (2)=  n=15取得最小值

查看答案和解析>>

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.

(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.

(1) 若成等比数列,求的值;

(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;

(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

 

查看答案和解析>>

(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和

(1)若,求的值;

(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式成立;

(3)是否存在常数k和等差数列{an},使恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。

 

查看答案和解析>>

(本题满分13分)

对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.

(1)若,数列是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;

(2)证明:若数列是“M类数列”,则数列也是“M类数列”;

(3)若数列满足为常数.求数列项的和.

 

查看答案和解析>>


同步练习册答案