知BD⊥ACC1A1.又AC1ACC1A1. ∴BD⊥AC1.∴BD∥NA.∴AC1⊥NA. 又由BD⊥AC可知NA⊥AC. ∴∠C1AC就是平面AFC1与平面ABCD所成二面角的平面角或补角. ???10分 查看更多

 

题目列表(包括答案和解析)

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
    线段s与线段s1的关系 m、r的取值或表达式 
 s所在直线平行于s1所在直线  
 s所在直线平分线段s1  

查看答案和解析>>

(本小题满分12分)已知函数

(I)若函数在区间上存在极值,求实数a的取值范围;

(II)当时,不等式恒成立,求实数k的取值范围.

(Ⅲ)求证:解:(1),其定义域为,则

时,;当时,

在(0,1)上单调递增,在上单调递减,

即当时,函数取得极大值.                                       (3分)

函数在区间上存在极值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,则

,即上单调递增,                          (7分)

,从而,故上单调递增,       (7分)

          (8分)

(3)由(2)知,当时,恒成立,即

,则,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

 

查看答案和解析>>

已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).

查看答案和解析>>

已知是实系数方程的虚根,记它在直角坐标平面上的对应点为.

   (1)若在直线上,求证:在圆上;

   (2)给定圆),则存在唯一的线段满足:①若在圆上,则在线段上;② 若是线段上一点(非端点),则在圆上. 写出线段的表达式,并说明理由;

   (3)由(2)知线段与圆之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中是(1)中圆的对应线段).

    表一:

线段与线段的关系

的取值或表达式

所在直线平行于所在直线

所在直线平分线段

线段与线段长度相等

查看答案和解析>>

(上海春卷22)已知是实系数方程的虚根,记它在直角坐标平面上的对应点为.

(1)若在直线上,求证:在圆上;

(2)给定圆),则存在唯一的线段满足:①若在圆上,则在线段上;② 若是线段上一点(非端点),则在圆上. 写出线段的表达式,并说明理由;

(3)由(2)知线段与圆之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中是(1)中圆的对应线段).

线段与线段的关系

的取值或表达式

所在直线平行于所在直线

所在直线平分线段

线段与线段长度相等

查看答案和解析>>


同步练习册答案