题目列表(包括答案和解析)
求圆心在直线上,且经过原点及点的圆的标准方程.
【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(),然后利用,得到,从而圆心,半径.可得原点 标准方程。
解:设圆心C的坐标为(),...........2分
则,即
,解得........4分
所以圆心,半径...........8分
故圆C的标准方程为:.......10分
设椭圆 :()的一个顶点为,,分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线 与椭圆 交于 , 两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。
解:(1)椭圆的顶点为,即
,解得, 椭圆的标准方程为 --------4分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线为,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直线的方程为或
即或
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆的方程为,由题意得
解得
第二问若存在直线满足条件的方程为,代入椭圆的方程得
.
因为直线与椭圆相交于不同的两点,设两点的坐标分别为,
所以
所以.解得。
解:⑴设椭圆的方程为,由题意得
解得,故椭圆的方程为.……………………4分
⑵若存在直线满足条件的方程为,代入椭圆的方程得
.
因为直线与椭圆相交于不同的两点,设两点的坐标分别为,
所以
所以.
又,
因为,即,
所以.
即.
所以,解得.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
【解析】利用圆心和半径表示圆的方程,首先
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2)
∴r==,
故所求圆的方程为:+=2
解:法一:
设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3, ………4分
和y=-2x联立解得x=1,y=-2,即圆心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圆的方程为:+=2 ………………………12分
法二:由条件设所求圆的方程为:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圆的方程为:+=2 ………………………12分
其它方法相应给分
设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(Ⅰ)若直线与的斜率之积为,求椭圆的离心率;
(Ⅱ)若,证明直线的斜率 满足
【解析】(1)解:设点P的坐标为.由题意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为.
由条件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为.
由P在椭圆上,有
因为,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com