故可能有四点共圆.此时. 查看更多

 

题目列表(包括答案和解析)

(2009•黄冈模拟)已知A(1,0),B(-2,0),动点M满足∠MBA=2∠MAB(∠MAB≠0).
(1)求动点M的轨迹E的方程;
(2)若直线l:y=
13
x+b
,且轨迹E上存在不同两点C、D关于直线l对称.
①求实数b的取值范围;
②是否可能有A、B、C、D四点共圆?若可能,求实数b的值;若不可能,请说明理由.

查看答案和解析>>

已知A(1,0),B(-2,0),动点M满足∠MBA=2∠MAB(∠MAB≠0).
(1)求动点M的轨迹E的方程;
(2)若直线l:,且轨迹E上存在不同两点C、D关于直线l对称.
①求实数b的取值范围;
②是否可能有A、B、C、D四点共圆?若可能,求实数b的值;若不可能,请说明理由.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

如图直角梯形ABCD中,∠DAB=90°,AD∥BC,E,F是AB边的四等分点,AB=4,BC=BF=AE=1,AD=3,P为在梯形区域内一动点,满足PE+PF=AB,记动点P的轨迹为Γ.
(1)建立适当的平面直角坐标系,求轨迹Γ在该坐标系中的方程;
(2)判断轨迹Γ与线段DC是否有交点,若有交点,求出交点位置;若没有交点,请说明理由;
(3)证明D,E,F,C四点共圆,并求出该圆的方程.

查看答案和解析>>

(2011•淄博二模)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
2

(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,
3
3
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>


同步练习册答案