(1)求以O为顶点.轴为对称轴.且过A.B两点的抛物线方程,(2)设Q为抛物线准线上任意一点.过Q作抛物线的两条切线.切点分别为M.N.求证:直线MN过一定点. 查看更多

 

题目列表(包括答案和解析)

 

如图,直角坐标系xOy中,Rt△ABC中∠C=90°,B、C在x轴上且关于原点O对称,D在边BC上,BD=3DC,△ABC的周长为12.若一双曲线E以B、C为焦点,且经过A、D两点。

(1)求双曲线的方程;

(2)若过点P(m,0)(m为非零常数)的直线L与双曲线E相交于不同于双曲线顶点的两点M、N,且,问x轴上是否存在定点G,使?若存在,求出所有这样定点G的坐标;若不存在,请说明理由。

 

 

 

 

 

 

 

 

查看答案和解析>>

设函数,其中

(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;

(Ⅱ)当时,设,讨论的单调性;

(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

 

查看答案和解析>>

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

(2013•怀化三模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=aln(x-1)
,其中a≠0.
(Ⅰ)若函数y=g(x)图象恒过定点P,且点P关于直线x=
3
2
的对称点在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性;
(Ⅲ)在(Ⅰ)的条件下,设G(x)=
f(x),x≤2
g(x),x>2
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>


同步练习册答案