题目列表(包括答案和解析)
在中,,分别是角所对边的长,,且
(1)求的面积;
(2)若,求角C.
【解析】第一问中,由又∵∴∴的面积为
第二问中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C为内角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面积为 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C为内角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
已知在中,,,,解这个三角形;
【解析】本试题主要考查了正弦定理的运用。由正弦定理得到:,然后又
又再又得到c。
解:由正弦定理得到:
又 ……4分
又 ……8分
又
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数为上偶函数,当时,又函数图象关于直线对称, 当方程在上有两个不同的实数解时,求实数的取值范围。
已知正项数列的前n项和满足:,
(1)求数列的通项和前n项和;
(2)求数列的前n项和;
(3)证明:不等式 对任意的,都成立.
【解析】第一问中,由于所以
两式作差,然后得到
从而得到结论
第二问中,利用裂项求和的思想得到结论。
第三问中,
又
结合放缩法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正项数列,∴ ∴
又n=1时,
∴ ∴数列是以1为首项,2为公差的等差数列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 对任意的,都成立.
如图,已知⊙中,直径垂直于弦,垂足为,是延长线上一点,切⊙于点,连接交于点,证明:
【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据为⊙的切线,∴为弦切角
连接 ∴…注意到是直径且垂直弦,所以 且…利用,可以证明。
解:∵为⊙的切线,∴为弦切角
连接 ∴……………………4分
又∵ 是直径且垂直弦 ∴ 且……………………8分
∴ ∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com