(2)可能的取值为0.3.6,则 查看更多

 

题目列表(包括答案和解析)

已知集合M={1,2,3,…,n}(n∈N*),若集合数学公式,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。

(1)求恰有两个岗位没有被选的概率;

(2)设选择A岗位的人数为,求的分布列及数学期望。

【解析】第一问利用古典概型概率公式得到记“恰有2个岗位没有被选”为事件A,则

第二问中,可能取值为0,1,2,3, 则  

, 

从而得到分布列和期望值。

解:(1)记“恰有2个岗位没有被选”为事件A,则……6分

(2)可能取值为0,1,2,3,… 7分

 

, 

列出分布列 ( 1分)

 

查看答案和解析>>

甲、乙两人进行羽毛球比赛,在每一局中,甲获胜的概率为P(0<P<1).

(1)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围;

(2)若P=,当采用3局2胜制的比赛规则时,求甲获胜的概率;

(3)如果甲、乙两人比赛6局,那么甲恰好胜3局的概率可能是吗?为什么?

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>


同步练习册答案