则当时.E递增.所以当x=50时.E的最大值为90(元) 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

已知函数y=,求:

(1)当x∈(0,+∞)时,函数的最大值;

(2)当x∈[2,+∞)时,函数的最大值.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>


同步练习册答案