5.若.则的最小值为 ▲ . 查看更多

 

题目列表(包括答案和解析)

2008.11

 

一、填空题

    ⒉     ⒊-i      ⒋     ⒌

       ⒎     ⒏      ⒐    ⒑

⒒14         ⒓      ⒔   ⒕m>

二、解答题

⒖解:(Ⅰ)

             ……(4分)

 ∵函数的单调增区间为

,∴

∴函数f(x)的单调递增区间为……(8分)

(Ⅱ)当时,,∴

∴函数f(x)的值域为……(14分)

⒗解:(Ⅰ) ∵DC⊥平面ABC,EB⊥平面ABC

∴DC//EB,又∵DC平面ABE,EB平面ABE,∴DC∥平面ABE……(4分)

(Ⅱ)∵DC⊥平面ABC,∴DC⊥AF,又∵AF⊥BC,∴AF⊥平面BCDE……(8分)

(Ⅲ)由(2)知AF⊥平面BCDE,∴AF⊥EF,在三角形DEF中,由计算知DF⊥EF,

∴EF⊥平面AFD,又EF平面AFE,∴平面AFD⊥平面AFE.……(14分)

⒘解:根据题意得,BC=km,BD=12km,CD=12km,∠CAB=75°,

设∠ACD=α,∠CDB=β

在△CDB中,由余弦定理得

,所以

于是…………(7分)

在△ACD中,由正弦定理得

答:此人还得走km到达A城……(14分)

⒙解:(1)  因x=-1是的一个极值点

即 2+b-1=0

∴b= -1,经检验,适合题意,所以b= -1.……(5分)

(2)  

>0

>0

∴x>

∴函数的单调增区间为……(10分)

(3)对时,f(x)>c-4x恒成立

∴即对时,f(x) +4x >c恒成立

=

==0

(舍)

上单调递减,在上单调递增。

在x=时取最小值5-

∴C<5-……………………………………(16分)

⒚解:(Ⅰ)∵为偶函数,∴,∴,∴

  ∴,∴函数为奇函数;……(4分)

(Ⅱ)⑴由得方程有不等实根

     ∴△

      又的对称轴

      故在(-1,1)上是单调函数……………………………………………(10分)

是方程(*)的根,∴

,同理

同理

要使,只需,∴

,解集为

的取值范围……………………(16分)

⒛(Ⅰ)证明:

由条件可得,所以……(4分)

 (Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+9]=(-1)n+1(an-2n+6)

=(-1)n?(an-3n+9)=-bn

又b1=,所以

当λ=-6时,bn=0(n∈N+),此时{bn}不是等比数列,

当λ≠-6时,b1=≠0,由上可知bn≠0,∴(n∈N+).

故当λ≠-6时,数列{bn}是以-(λ+6)为首项,-为公比的等比数列.……(10分)

(Ⅲ)由(Ⅱ)知,当λ=-6,bn=0,Sn=0,不满足题目要求.

∴λ≠-6,故知bn= -(λ+6)?(-)n-1,于是可得

当n为正奇数时,1<f(n)

∴f(n)的最大值为f(1)=,f(n)的最小值为f(2)= ,

于是,由①式得a<-(λ+6)<

当a<b3a时,由-b-63a-6,不存在实数满足题目要求;

当b>3a时存在实数λ,使得对任意正整数n,都有a<Sn<b,

且λ的取值范围是(-b-6, -3a-6)…………(16分)


同步练习册答案