固定的汽缸内由活塞B封闭着一定质量的气体.在通常的情况下.这些气体分子之间的相互作用力可以忽略.在外力F作用下.将活塞B缓慢地向右拉动.如图所示.在拉动活塞的过程中.假设汽缸壁的导热性能很好.环境的温度保持不变.关于对汽缸内的气体的下列论述.其中正确的是 查看更多

 

题目列表(包括答案和解析)

固定的汽缸内由活塞B封闭着一定质量的气体,在通常的情况下,这些气体分子之间的相互作用力可以忽略.在外力F作用下,将活塞B缓慢地向右拉动,如图所示.在拉动活塞的过程中,假设汽缸壁的导热性能很好,环境的温度保持不变,关于对汽缸内的气体的下列论述,其中正确的是( )

A.气体从外界吸热,气体分子的平均动能减小
B.气体对活塞做功,气体分子的平均动能不变
C.气体单位体积的分子数不变,气体压强不变
D.气体单体积的分子数增大,气体压强不变

查看答案和解析>>

如图所示,固定的汽缸内由活塞B封闭着一定质量的气体,在通常的情况下,这些气体分子之间的相互作用力可以忽略。在外力F作用下,将活塞B缓慢地向右拉动。在拉动活塞的过程中,假设汽缸壁的导热性能很好,环境的温度保持不变,关于对汽缸内的气体的下列论述,其中正确的是
A.气体从外界吸热,气体分子的平均动能减小
B.气体对活塞做功,气体分子的平均动能不变
C.气体单位体积的分子数不变,气体压强不变
D.气体单位体积的分子数减小,气体压强减小

查看答案和解析>>

固定的汽缸由活塞B封闭着一定质量的气体,在通常的情况下,这些气体分子之间的相互作用力可以忽略。在外力F作用下,将活塞B缓慢地向右拉动,如图所示。在拉动活塞的过程中,假设汽缸壁的导热性能很好,环境的温度保持不变,关于对汽缸内的气体的下列论述,其中正确的是                          (    )

    A.气体从外界吸热,气体分子的平均动能减小

    B.气体对活塞做功,气体分子的平均动能不变

20070402


 
    C.气体单位体积的分子数不变,气体压强不变

    D.气体单位体积的分子数减小,气体压强不变

查看答案和解析>>

(2009?盐城一模)(选修模块3-3)
(1)如图甲所示,导热的气缸固定在水平地面上,用活塞把一定质量的理想气体封闭在气缸中,气缸的内壁光滑.现用水平外力F作用于活塞杆,使活塞缓慢地向右移动,由状态①变化到状态②,如果环境保持恒温,此过程可用下列 (图乙)
AD
AD
图象表示
(2)以下说法正确的是
BD
BD

A.两个分子甲和乙相距较远(此时它们之间的作用力可以忽略),设甲固定不动,乙逐渐向甲靠近,直到不能再靠近,在整个移动过程中分子力先增大后减小,分子势能先减小后增大
B.晶体熔化过程中,吸收的热量全部用来破坏空间点阵,增加分子势能,而分子平均动能却保持不变,所以晶体有固定的熔点
C.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体
D.控制液面上方饱和汽的体积不变,升高温度,则达到动态平衡后该饱和汽的质量增大,密度增大,压强也增大
(3)如图丙所示,用面积为S 的活塞在汽缸内封闭着一定质量的空气,活塞质量为m,在活塞上加一恒定压力F,使活塞下降的最大高度为△h,已知此过程中气体放出的热量为Q,外界大气压强为p0,问此过程中被封闭气体的内能变化了多少?

查看答案和解析>>

精英家教网A.选修3-3
(1)有以下说法:其中正确的是
 

A.“用油膜法估测分子的大小”实验中油酸分子直径等于纯油酸体积除以相应油酸膜的面积
B.理想气体在体积不变的情况下,压强p与热力学温度T成正比
C.气体分子的平均动能越大,气体的压强就越大
D.物理性质各向同性的一定是非晶体
E.液体的表面张力是由于液体分子间的相互作用引起的
F.控制液面上方饱和汽的体积不变,升高温度,则达到动态平衡后该饱和汽的质量增大,密度增大,压强也增大
G.让一小球沿碗的圆弧型内壁来回滚动,小球的运动是可逆过程
(2)如图甲所示,用面积为S的活塞在汽缸内封闭着一定质量的空气,活塞上放一砝码,活塞和砝码的总质量为m,现对汽缸缓缓加热使汽缸内的空气温度从TI升高到T2,且空气柱的高度增加了△l,已知加热时气体吸收的热量为Q,外界大气压强为p0,问此过程中被封闭气体的内能变化了多少?请在下面的图乙的V-T图上大致作出该过程的图象(包括在图象上标出过程的方向).
B.选修3-5
(1)下列说法中正确的是 
A.X射线是处于激发态的原子核辐射出的方向与线圈中电流流向相同
B.一群处于n=3能级激发态的氢原子,自发跃迁时能发出3种不同频率的光
C.放射性元素发生一次β衰变,原子序数增加1
D.235U的半衰期约为7亿年,随地球环境的变化,半衰期可能变短
(2)下列叙述中不符合物理学史的是
A.麦克斯韦提出了光的电磁说
B.爱因斯坦为解释光的干涉现象提出了光子说
C.汤姆生发现了电子,并首先提出原子的核式结构模型
D.贝克勒尔通过对天然放射性的研究,发现了放射性元素钋(Pa)和镭(Ra)
(3)两磁铁各固定放在一辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5kg,乙车和磁铁的总质量为1.0kg.两磁铁的N极相对.推动一下,使两车相向运动.某时刻甲的速率为2m/s,乙的速率为3m/s,方向与甲相反.两车运动过程中始终未相碰,则两车最近时,乙的速度为多大?

查看答案和解析>>

一、选择题(本题包括12小题,共48分)

1

2

3

4

5

6

7

8

9

10

11

12

CD

B

C

AC

C

B

BD

C

B

D

CD

A

二、实验题(本题共两小题,共17分)

13、⑴   1.10  (2分)(说明:有效数字不正确不给分)

  0.765  (3分)(说明:有效数字不正确不给分)

14、⑴  ①不放B时用秒表测出弹簧振子完成30次全振动的时间t1

B固定在A上,用秒表测出弹簧振子完成30次全振动的时间t2(此两步共5分,明确写出只测一次全振动时间的最多给3分)

⑵  (3分)

⑶   (1分)   物体与支持面之间没有摩擦力,弹簧振子的周期不变。(3分)

三、计算题(本题包括5小题,共55分)

15、(8分)(说明:其它方法正确按步骤参照给分)

解:对飞鸟,设其最小的飞行速度为v1,则:       (1分)

对飞机,设其最小起飞速度为v2,    则:        (1分)

两式相比得:                                (1分)

代入数据得:                                (2分)

设飞机在跑道上滑行的距离为s,由公式:v2=2as                  (1分)

得:                             =900m                (2分)

 

16、(10分)(说明:其它方法正确按步骤参照给分)

解:设0~2.0s内物体的加速度大小为a1,2~4s内物体的加速度大小为a2

得         a1=5m/s2,                               (1分)

a2=1m/s2                                                                 (1分)

由牛顿第二定律得:                                (1分)  

                              (1分)

解得:             F=30N                                      (2分)

由图象得:物体在前4s内的位移为:=8m         (2分)

故水平外力F在4s内所做的功为: =-240J               (2分)

17、(12分)(说明:其它方法正确按步骤参照给分)

解:⑴设火星表面的重力加速度为,地球表面的重力加速度为g

由万有引力定律有:                                 (1分)

可得       ,                 (2分)

设探测器在12m高处向下的速度为,则根据能量关系有:

                        (1分)

代入数据,解得                        (1分)

⑵设探测器落地的速度为,反弹的速度为,则有:

                           (1分)

                                   (1分)

代入数据,解得:                                      (1分)

                     (1分)

设“勇气”号和气囊第一次与火星碰撞时所受到的平均冲力为N,

由动量定理得:                        (2分)

代入数据,解得:N=4400N                                       (1分)

18、(12分)(说明:其它方法正确按步骤参照给分)

解:⑴设粒子从电场中飞出时的侧向位移为h, 穿过界面PS时偏离中心线OR的距离为y

则:                      h=at2/2                                                          (1分)                           

       即:              (1分)

代入数据,解得:        h=0.03m=3cm                           (1分)

带电粒子在离开电场后将做匀速直线运动,由相似三角形知识得:

                               (1分)

代入数据,解得:      y=0.12m=12cm                              (1分)

⑵设粒子从电场中飞出时沿电场方向的速度为vy,则:vy=at=

代入数据,解得:       vy=1.5×106m/s                            (1分)

所以粒子从电场中飞出时沿电场方向的速度为:

                       (1分)

设粒子从电场中飞出时的速度方向与水平方向的夹角为θ,则:

                             (1分)

因为粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏上,所以该带电粒子在穿过界面PS后将绕点电荷Q作匀速圆周运动,其半径与速度方向垂直。

匀速圆周运动的半径:                          (1分)

由:                                               (2分)

代入数据,解得:         Q=1.04×10-8C                         (1分)

19、(13分)(说明:其它方法正确按步骤参照给分)

解:⑴设第1个球与木盒相遇后瞬间,两者共同运动的速度为v1,根据动量守恒定律:

                        (1分)

代入数据,解得:             v1=3m/s                           (1分)

⑵设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过t0与木盒相遇,

则:                                                    (1分)

设第1个球进入木盒后两者共同运动的加速度为a,根据牛顿第二定律:

得:                  (1分)

设木盒减速运动的时间为t1,加速到与传送带相同的速度的时间为t2,则:

=1s                          (1分)

故木盒在2s内的位移为零                                        (1分)

依题意:                        (2分)

      代入数据,解得: s=7.5m    t0=0.5s               (1分)

⑶自木盒与第1个球相遇至与第2个球相遇的这一过程中,传送带的位移为S,木盒的位移为s1,则:                                  (1分)

                       (1分)

故木盒相对与传送带的位移:                  

则木盒与传送带间的摩擦而产生的热量是:               (2分)

 

 


同步练习册答案