2.答卷前将密封线内的项目填写清楚. 查看更多

 

题目列表(包括答案和解析)

如图,下面的表格内的数值填写规则如下:先将第1行的所有空格填上1;再把一个首项为1,公比为q的数列{an}依次填入第一列的空格内;其它空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)设第2行的数依次为b1,b2,…,bn,试用n,q表示b1+b2+…+bn的值;
(2)设第3列的数依次为c1,c2,c3,…,cn,求证:对于任意非零实数q,c1+c3>2c2
(3)能否找到q的值,使得(2)中的数列c1,c2,c3,…,cn的前m项c1,c2,…,cm(m≥3)成为等比数列?若能找到,m的值有多少个?若不能找到,说明理由.

查看答案和解析>>

组委会计划对参加某项田径比赛的12名运动员的血样进行突击检验,检查是否含有兴奋剂HGH成分.采用如下检测方法:将所有待检运动员分成4个小组,每组3个人,再把每个人的血样分成两份,化验室将每个小组内的3个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的3个人只需化验这一次就算合格;如果结果中含HGH成分,那么需对该组进行再次检验,即需要把这3个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这3个人一共进行了4次化验,假定对所有人来说,化验结果中含有HGH成分的概率均为
110

(Ⅰ)求一个小组只需经过一次检验就合格的概率;
(Ⅱ)设一个小组检验次数为随机变量ξ,求ξ的分布列及数学期望;
(Ⅲ)至少有两个小组只需经过一次检验就合格的概率.(精确到0.01,参考数据:0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

如图是将二进制数11111(2)化为十进制数的一个程序框图.
(1)将判断框内的条件补充完整;
(2)请用直到型循环结构改写流程图.

查看答案和解析>>

(2008•成都二模)(新华网)反兴奋剂的大敌、服药者的宠儿--HGH(人体生长激素),有望在8月的北京奥运会上首次“伏法”.据悉,国际体育界研究近10年仍不见显著成效的HGH检测,日前已取得新的进展,新生产的检测设备有希望在北京奥运会上使用.若组委会计划对参加某项田径比赛的120名运动员的血样进行突击检查,采用如下化验
方法:将所有待检运动员分成若干小组,每组m个人,再把每个人的血样分成两份,化验时将每个小组内的m个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的m个人只需化验这一次就算检验合格;如果结果中含有HGH成分,那么需要对该组进行再次检验,即需要把这m个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这m个人一共需要进行m+1次化验.假定对所有人来说,化验结果中含有HGH成分的概率均为
110
.当m=3时,
(1)求一个小组只需经过一次检验就合格的概率;
(2)设一个小组的检验次数为随机变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

(新华网)反兴奋剂的大敌、服药者的宠儿——HGH(人体生长激素),有望在2008年8月的北京奥运会上首次“伏法”。据悉,国际体育界研究近10年仍不见显著成效的HGH检测,日前已取得新的进展,新生产的检测设备有希望在北京奥运会上使用.若组委会计划对参加某项比赛的12名运动员的血样进行突击检查,采用如下化验方法:将所有待检运动员分成若干小组,每组m个人,再把每个人的血样分成两份,化验时将每个小组内的m个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的m个人只需化验这一次就算检验合格;如果结果中含有HGH成分,那么需要对该组进行再次检验,即需要把这m个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这m个人一共需要进行m+1次化验.假定对所有人来说,化验结果中含有HGH成分的概率均为 .当m=3时,求:

(1)一个小组只需经过一次检验就合格的概率;

(2)至少有两个小组只需经过一次检验就合格的概率(精确到0.01.参考数据:0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

 

1―5AACBB    6―8DCB

二、填空题:本大题共6个小题,每小题5分,共30分。

9.                10.                   11.6

12.         13.①和③  或①和④             14.

三、解答题:本大题共6个小题,共80分。

15.解(I)该灯泡的使用寿命不足1500小时的概率 ……6分

   (II)至多有2只灯泡使用寿命不足1500小时的概率……12分

答:从这1000只灯泡中任选1只灯泡使用寿命不足1500小时的概率等于

   从这1000只灯泡中任选3只,至多有2只灯泡使用寿命不足1500小时的概率等于。                                                  ……13分

16.(本小题共13分)

解:(I)由已知得          ……5分

    又在锐角△ABC中,所以A=60°,[不说明是锐角△ABC中,扣1分]……7分

   (II)因为a=2,A=60°所以  ……9分

    而                         ……11分

    又                        ……13分

    所以△ABC面积S的最大值等于

 

 

17.(本小题共13分)

解:(I)               ……3分

    由图知        ……5分

   (II)

                          ……6分

故函数F(x)的单调增区间是,单调减区间  ……8分

故函数F(x)的单调增区间是……10分

当a=0时,故函数F(x)的单调增区间是……12分

综上所述:

函数F(x)的单调增区间是,单调减区间是

时,函数F(x)的单调增区间是。              ……13分

18.(本小题共14分)

解:(I)在平面A’FA内过点 A’作A’H⊥垂足为H

    因为    ……4分

    所以               ……6分

    即点A′在平面ABC上的射影在线段AF上         ……7分

  (II)由(I)知,又A′E……9分

 

 

   则点H为正

   因为……11分

,所以二面角的大小为……13分

二面角的大小即为当所旋转过的角的大小。

故所求角等于                                          ……14分

19.(本小题共14分)

    解:(I)由已知……2分

     ……5分

所以当有最小值为-7;

     当有最大值为1。                        ……7分

   (II)设点  直线AB方程:

         ……※

……9分

因为为钝角,

所以    ……12分

解得,此时满足方程※有两个不等的实根……14分

故直线l的斜率k的取值范围  

 

20.(本小题共14分)

解:(I)因为数列是等差数列,公差为2

   

    (II)又

,与已知矛盾,所以3

时,  所以=4  ……8分

    (III)由已知=4时,

所以数列{an}的前n项和

   

……14分

 

 


同步练习册答案