(II)若的值, 条件下.求数列{an}的前n项和. 查看更多

 

题目列表(包括答案和解析)

已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(I)如果函数g(x)的单调递减区间为数学公式,求函数g(x)的解析式;
(II)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(III)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

已知

(I)如果函数的单调递减区间为,求函数的解析式;

(II)在(Ⅰ)的条件下,求函数y=的图像在点处的切线方程;

(III)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

(2011•自贡三模)给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆叙道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2cl和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有a1-c1=a2-c2
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若a∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

⑤函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2.
其中所有真命题的代号有
②④
②④

查看答案和解析>>

(2012•绵阳三模)已知函数f(x)=2x3-3ax2+a+b(其中a,b为实常数).
(I)讨论函数的单调区间;
(II) 当a>0时,函数f(x)有三个不同的零点,证明:-a<b<a3-a;
(III) 若f(x)在区间[1,2]上是减函数,设关于X的方程f(x)=2x3-2ax2+3x+a+b的两个非零实数根为x1,x2.试问是否存在实数m,使得m2+tm+1≤|x1-x2|对任意满足条件的a及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数

      (I)当函数的图象过点(-1, 0),且仅有一个零点时,求的表达式;

      (II)在(I)的条件下,当时,是单调函数,求实数K的取值范围;

      (III)若,,当,且函数为偶函数时,试判断能否大于O?

查看答案和解析>>

 

1―5AACBB    6―8DCB

二、填空题:本大题共6个小题,每小题5分,共30分。

9.                10.                   11.6

12.         13.①和③  或①和④             14.

三、解答题:本大题共6个小题,共80分。

15.解(I)该灯泡的使用寿命不足1500小时的概率 ……6分

   (II)至多有2只灯泡使用寿命不足1500小时的概率……12分

答:从这1000只灯泡中任选1只灯泡使用寿命不足1500小时的概率等于

   从这1000只灯泡中任选3只,至多有2只灯泡使用寿命不足1500小时的概率等于。                                                  ……13分

16.(本小题共13分)

解:(I)由已知得          ……5分

    又在锐角△ABC中,所以A=60°,[不说明是锐角△ABC中,扣1分]……7分

   (II)因为a=2,A=60°所以  ……9分

    而                         ……11分

    又                        ……13分

    所以△ABC面积S的最大值等于

 

 

17.(本小题共13分)

解:(I)               ……3分

    由图知        ……5分

   (II)

                          ……6分

故函数F(x)的单调增区间是,单调减区间  ……8分

故函数F(x)的单调增区间是……10分

当a=0时,故函数F(x)的单调增区间是……12分

综上所述:

函数F(x)的单调增区间是,单调减区间是

时,函数F(x)的单调增区间是。              ……13分

18.(本小题共14分)

解:(I)在平面A’FA内过点 A’作A’H⊥垂足为H

    因为    ……4分

    所以               ……6分

    即点A′在平面ABC上的射影在线段AF上         ……7分

  (II)由(I)知,又A′E……9分

 

 

   则点H为正

   因为……11分

,所以二面角的大小为……13分

二面角的大小即为当所旋转过的角的大小。

故所求角等于                                          ……14分

19.(本小题共14分)

    解:(I)由已知……2分

     ……5分

所以当有最小值为-7;

     当有最大值为1。                        ……7分

   (II)设点  直线AB方程:

         ……※

……9分

因为为钝角,

所以    ……12分

解得,此时满足方程※有两个不等的实根……14分

故直线l的斜率k的取值范围  

 

20.(本小题共14分)

解:(I)因为数列是等差数列,公差为2

   

    (II)又

,与已知矛盾,所以3

时,  所以=4  ……8分

    (III)由已知=4时,

所以数列{an}的前n项和

   

……14分

 

 


同步练习册答案