如图.在长方体中.分别过BC和A1D1的两个平行平面如果将长方体分成体积相等的三个部分. 查看更多

 

题目列表(包括答案和解析)

如图,在长方体中,AB=AD=2
3
,CC1=
2
,则二面角C1-BD-C的大小为(  )

查看答案和解析>>

(12分)如图,在长方体中,点在棱的延长线上,且

(Ⅰ)求证://平面 ;

(Ⅱ)求证:平面平面; 

                        

 

查看答案和解析>>

(本小题满分12分)

如图,在长方体中,的中点,的中点。

   (1)证明:

   (2)求与平面所成角的正弦值。

                                             

查看答案和解析>>

如图,在长方体中,点分别在上,且

(1)求证:平面

(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成角相等,试根据上述定理,在时,求平面与平面所成角的大小.

查看答案和解析>>

本题满分10分)如图,在长方体-中,分别是,的中点,分别是,中点,

(Ⅰ)求三棱锥的体积;
(Ⅱ)求证: 

查看答案和解析>>

 

一 、选择题

1.C.  2.A.  3.A.  4.A.  5.A. 6.C.  7.A.  8.A.  9.C.  10.D.  11.C.12.D.

一、                                                              填空题

13.. 14.2. 15.16.  16.13.

三、解答题

17.(理科) (1)由(1+tanA)(1+tanB)=2,得

tanA+tanB=1-tanAtanB,

即tan(A+B)=1.              

∵A、B为△ABC内角, ∴A+B=.  则 C=(定值).

(2)已知△ABC内接于单位圆, ∴△ABC外接圆半径R=1.

∴由正弦定理得:.

则△ABC面积S=

                  =

                  =

∵  0<B<, ∴.

    故 当时,△ABC面积S的最大值为.   

(文科) (1)

,∴

∴ 向量的夹角的大小为

(2)

为邻边的平行四边形的面积

据此猜想,的几何意义是以为邻边的平行四边形的面积.

18. (1)学生甲恰好抽到3道历史题,2道地理题的概率为

       (2)若学生甲被评为良好,则他应答对5道题或4道题

       而答对4道题包括两种情况:①答对3道历史题和1道地理(错一道地理题);②答对2道历史题和2道地理题(错一道历史题)。

       设答对5道记作事件A;

       答对3道历史题,1道地理题记作事件B;

       答对2道历史题,2道地理题,记作事件C;

      

         

         

       ∴甲被评为良好的概率为:

      

19.  (1)延长AC到G,使CG=AC,连结BG、DG,E是AB中点,

    故直线BG和BD所成的锐角(或直角)就是CE和BD所成的角.

   

   (2)设C到平面ABD的距离为h

   

   

20. (1)

(2) 由(1)知:,故是增函数

对于一切恒成立.

由定理知:存在

由(1)知:

  

的一般性知:

21. (1)以中点为原点,所在直线为轴,建立平面直角坐标系,则

 

 

 

 

 

 

 

 

 

,由,此即点的轨迹方程.

   (2)将向右平移一个单位,再向下平移一个单位后,得到圆

依题意有

   (3)不妨设点的上方,并设,则

所以,由于

22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x

∵f(x)是奇函数,g(x)是偶函数,∴-f(x)+g(x)=a-x

∴f(x)=,g(x)=

是R上的减函数,

∴y=f -1(x)也是R上的减函数. 

 

 n>2,上是增函数.是减函数;

上是减函数.是增函数.

(文科) (1)∵函数时取得极值,∴-1,3是方程的两根,

(2),当x变化时,有下表

x

(-∞,-1)

-1

(-1,3)

3

(3,+∞)

f(x)

+

0

-

0

+

f(x)

Max

c+5

Min

c-27

时f(x)的最大值为c+54.

要使f(x)<2|c|恒成立,只要c+54<2|c|即可.

当c≥0时c+54<2c,  ∴c>54.

当c<0时c+54<-2c,∴c<-18.

∴c∈(-∞,-18)∪(54,+∞)


同步练习册答案