(3)令.若对任意.都有.求的取值范围. 江苏省南京市2008――2009学年度第一学期期末调研测试高三数学附加题 查看更多

 

题目列表(包括答案和解析)

在数列{an}中,a1=1,从第二项起,每一项与它前一项的差依次组成首项为2且公比为q(q>0)的等比数列.
(1)当q=1时,证明数列{an}是等差数列;
(2)若q=2,求数列{nan}的前n项和Sn
(3)令bn=
an+1an
,若对任意n∈N*,都有bn+1<bn,求q的取值范围.

查看答案和解析>>

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1,令f(x)=g(x+)+mlnx+(m∈R),
(Ⅰ)求g(x)的表达式;
(Ⅱ)若x>0使f(x)≤0成立,求实数m的取值范围;
(Ⅲ)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1。

查看答案和解析>>

已知二次函数g(x)对任意实数x都满足g(x)=g(1-x),g(x)的最小值为-且g(1)=-1.令f(x)=g(x+)+mlnx+(m∈R,x>0).

(1)求g(x)的表达式;

(2)若x>0使f(x)≤0成立,求实数m的取值范围;

(3)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对x1、x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0)

(1)求g(x)的表达式;
(2)若?x>0使f(x)≤0成立,求实数m的取值范围;
(3)设1<m≤e,H(x)=f(x)-(m+1)x,证明:对?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=2g(x+
1
2
)+mx-3m2lnx+
9
4
(m>0,x>0)

(1)求g(x)的表达式;
(2)若函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(3)记函数H(x)=[x(x-a)2-1]•[-x2+(a-1)x+a-1],若函数y=H(x)有5个不同的零点,求实数a的取值范围.

查看答案和解析>>


同步练习册答案