13.如图所示.倾角为30°的光滑斜面.底端固定一沿斜面方向的弹簧.一质量为m的滑块将弹簧压缩到A点.此时弹簧的压缩量为△L.滑块在A点由静止释放.沿斜面滑过距离L时速度为0.求: 查看更多

 

题目列表(包括答案和解析)

如图所示,倾角为30°的光滑斜面,底端固定一沿斜面方向的弹簧.一质量为m的滑块将弹簧压缩到A点(滑块与弹簧不连接),此时弹簧的压缩量为△L.滑块在A点由静止释放,沿斜面滑过距离L时速度为0.求:
(1)滑块在A点时弹簧的弹性势能;
(2)滑块刚脱离弹簧时的速度.
精英家教网

查看答案和解析>>

如图所示,倾角为30°的光滑斜面,底端固定一沿斜面方向的弹簧.一质量为m的滑块将弹簧压缩到A点(滑块与弹簧不连接),此时弹簧的压缩量为△L.滑块在A点由静止释放,沿斜面滑过距离L时速度为0.求:
(1)滑块在A点时弹簧的弹性势能;
(2)滑块刚脱离弹簧时的速度.

查看答案和解析>>

如图所示,倾角为30°的光滑斜面,底端固定一沿斜面方向的弹簧.一质量为m的滑块将弹簧压缩到A点(滑块与弹簧不连接),此时弹簧的压缩量为ΔL.滑块在A点由静止释放,沿斜面滑过距离L时速度为0.求:

(1)滑块在A点时弹簧的弹性势能;

(2)滑块刚脱离弹簧时的速度.

查看答案和解析>>

如图所示,倾角为30°的光滑斜面的下端有一水平传送带.传送带正以v=6m/s的速度运动,运动方向如图所示.一个质量为2㎏的物体(物体可以视为质点),从h=3.2m高处由静止沿斜面下滑,物体经过A点时,无论是从斜面到传送带还是从传送带到斜面,都不计其速率变化.物体与传送带间的动摩擦因数为0.5,传送带左右两端A、B间的距离LAB=10m,重力加速度g=10m/s2,则:
(1)物体由静止沿斜面下滑到斜面末端需要多长时间?
(2)物体在传送带上向左最多能滑到距A多远处?
(3)物体随传送带向右运动,最后沿斜面上滑的最大高度h′?

查看答案和解析>>

如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s的速度运动,运动方向如图所示.一个质量为2kg的物体(物体可以视为质点),从h=3.2m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10m/s2,求:
(1)传送带左右两端AB间的距离L.
(2)上述过程中物体与传送带组成的系统因摩擦产生的热量.
(3)物体随传送带向右运动,最后沿斜面上滑的最大高度h′.

查看答案和解析>>

一、单项选择题:本题共5小题,每小题3分,共计15分

题号

1

2

3

4

5

答案

A

B

D

B

C

二、多项选择题:每小题4分,共计16分。每小题有多个选项符合题意,全部选对的得4分,选对但不全的得2分,错选或不答的得O分。

题号

6

7

8

9

答案

BD

AD

ACD

BD

三、简答题:本题分必做题(第l0、11题)和选做题(第12题)两部分,共计42分。请将解答填写在答题卡相应的位置。

10.⑴探究的是加速度与其它量之间的比例关系(其它答法只要正确就给分。如:初速度为零的匀加速运动,在相同的时间内,位移与加速度成正比) (3分)

⑵砝码的数量 (2分)            ⑶ a(或)(2分)、(或a)(2分)

11.⑴g 导线(3分)                 ⑵0.8(3分)

⑶AC(3分)(错选得0分,漏选得2分)

12.

A(3-3)⑴AD(3分)(错选得0分,漏选得2分)

⑵BD(3分)(错选得0分,漏选得2分)

⑶解:由热力学第一定律△U=W+Q得

             △U=(F+mg+P0S)△h-Q      (6分)

B(3-4)⑴20m/s(3分)

⑵AB (3分)(错选得0分,漏选得2分)

⑶解:∵n=    ∴r=300      (2分)

光路图如右图所示

∴L1=d/cosr =        (2分)

∴L2= L1sin300=       (2分)

C(3-5)⑴(3分)

⑵D(3分)

⑶解:由图知=4m/s、=―1m/s、=2m/s     (2分)

根据动量守恒定律有:ma =ma +  mb  (2分)

∴mb=2.5kg              (2分)

四、计算题:本题共4小题,共计47分。解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。

13.解:

                             (4分)

    (4分)

14.解:

⑴ △x = aT2     ∴a = △x/ T==10m/s2               (4分)

=  = 50m/s         (3分)

⑶ h =   ∴t==4s                              (2分)

BC = bc + t -t                                    (2分)

= bc + ()t

= bc + aTt

=95m                                              (1分)

15.解:

⑴负电荷       (3分)

⑵刚进入磁场瞬间,由牛顿第二定律得:

F= qkt-μ(mg + Bqv)=ma                ①     (2分)

进入磁场△t瞬间,由牛顿第二定律得:

F′= qk(t+△t)-μmg-μ Bq(+a△t)=ma   ②     (2分)

解①②得:a=                             ③     (2分)

⑶      ③式代入①式得:t=++               ④     (2分)

E=kt=                             ⑤    (1分)

16.解:

⑴进入磁场瞬间回路中动生电动势E1== kLgt12     (2分)

                    感生电动势E2=S =Ldk       (2分)

∵回路电流为零,∴动生电动势E1与感生电动势E2方向相反、大小相等,即:

E1 = kLgt12 = E2 = Ldk

∴d = gt1 2             (1分)

⑵Q===         (3分)

⑶金属棒在L1上方电流I=  =             (1分)

金属棒穿出磁场前瞬间电流I2 =  = =   (1分)

∵I1= I2             =       (2分)

金属棒穿过磁场过程中,由动能定理得:

mgd-W=       (2分)

W= mgd+

                  =            (1分)

 

 


同步练习册答案