17.已知常数a满足a>0.变量x.y满足x≥0.y≥0.且ax+y=2.若M(a)表示代数式的最大值时.求M(a)的表达式. 查看更多

 

题目列表(包括答案和解析)

已知常数a>1,变量x,y满足=3.

(1)若x=(t≠0),试以a,t表示y;

(2)若t∈[1,+∞),y有最小值8,求此时x和a的值.

查看答案和解析>>

已知奇函数f(x)满足:①定义域为R;②f(x)<a(常数a>0);③在(0,+∞)上单调递增;④对任意一个小于a的正数d,存在一个自变量x0,使f(x0)>d.

(1)请写出一个这样的函数的解析式:_______________.

(2)请猜想:=______________.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

D

D

A

C

A

A

D

C

C

A

 

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上。

13.   10          14.  15. ①②③     16. 8

三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。

17.

18.(1)x>1或x<-1

   (2)a>1时,

        0<a≤1/2时,不存在

        1/2<a<1时,

19. f (2+x) = f (2-x)   ∴f (4-2x) = f (2x)

0≤2x≤2,即0≤x≤1,无解

2≤2x≤4,即1≤x≤2,由f (x)<f (4-2x)得4/3<x≤2

20.P1=11/12  P2=13/36

21.

22.(1)

(2)

 

 


同步练习册答案