4.在等比数列中.若= A.100 B.80 C.95 D.135 查看更多

 

题目列表(包括答案和解析)

已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002, ,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)

(2)抽取的100的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,若在该样本中,数学成绩优秀率是30%,求a,b的值:

人数
数学
优秀
良好
及格
地理
优秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成绩及格的学生中,已知求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002, ,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)

(2)抽取的100的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,若在该样本中,数学成绩优秀率是30%,求a,b的值:
人数
数学
优秀
良好
及格
地理
优秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成绩及格的学生中,已知求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

已知F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.
(1)证明:d,b,a成等比数列;
(2)若M的坐标为(
2
,1)
,求椭圆C的方程;
[文科]在(2)的椭圆中,过F1的直线l与椭圆C交于A、B两点,若
OA
OB
=0,求直线l的方程.
[理科]在(2)的椭圆中,过F1的直线l与椭圆C交于A、B两点,若椭圆C上存在点P,使得
OP
=
OA
+
OB
,求直线l的方程.

查看答案和解析>>

 

第Ⅰ卷(选择题,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

1.3.5

第Ⅱ卷(非选择题,共100分)

二、填空题

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答题

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在时,

   

   

    在时,为减函数

    从而的单调递减区间为;…………(文8分)

   (2)(理科)  

    当时,由得单调递减区间为

    同理,当时,函数的单调递减区间为…………(理8分)

   (3)当,变换过程如下:

    1°将的图象向右平移个单位可得函数的图象。

    2°将所得函数图象上每个点的纵坐标扩大为原来的倍,而横坐标保持不变,可得函数的图象。

    3°再将所得图象向上平移一个单位,可得的图象……(12分)

   (其它的变换方法正确相应给分)

17.解:(1)三棱柱ABC―A1B1C1为直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1为直三棱柱

    底面ABC

    为直线B1C与平面ABC所成的角,即

    过点A作AM⊥BC于M,过M作MN⊥B1C于N,加结AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂线定理知AN⊥B1C从而∠ANM为二面角B―B1C―A的平面角。

    设AB=BB1=

    在Rt△B1BC中,BC=BB1

 

  

    即二面角B―B1C―A的正切值为 …………(文12分)

   (3)(理科)过点A1作A1H⊥平面B1AC于H,连结HC,则

    ∠A1CH为直线A1C与平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)从口袋A中摸出的3个球为最佳摸球组合即为从口袋A中摸出2个红球和1个黑球,其概率为

  ………………………………(6分)

   (2)由题意知:每个口袋中摸球为最佳组合的概率相同,从5个口袋中摸球可以看成5次独立重复试难,故所求概率为

  ……………………………………(12分)

   (理科)(1)设用队获第一且丙队获第二为事件A,则

  ………………………………………(6分)

   (2)可能的取值为0,3,6;则

  甲两场皆输:

  甲两场只胜一场:

0

3

6

P

 

  

的分布列为

 

 

 

  …………………………(12分)

19.解:(文科)(1)由

  函数的定义域为(-1,1)

  又

  

  …………………………………(6分)

   (2)任取

  

  

  

  又

  ……(13分)

   (理科)(1)由

  

又由函数

  当且仅当

  

  综上…………………………………………………(6分)

   (2)

  

②令

综上所述实数m的取值范围为……………(13分)

20.解:(1)的解集有且只有一个元素

  

  又由

  

  当

  当

     …………………………………(文6分,理5分)

   (2)         ①

    ②

由①-②得

…………………………………………(文13分,理10分)

   (3)(理科)由题设

       

       综上,得数列共有3个变号数,即变号数为3.……………………(理13分)

21.解(1)

 ………………………………(文6分,理4分)(2)(2)当AB的斜率为0时,显然满足题意

当AB的斜率不为0时,设,AB方程为代入椭圆方程

整理得

 

综上可知:恒有.………………………………(文13分,理9分)

 


同步练习册答案