A.如果., 查看更多

 

题目列表(包括答案和解析)

如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成”函数.给出下列函数:
①f(x)=sinx+cosx;
②f(x)=
2
(sinx+cosx);
③f(x)=sinx;
④f(x)=
2
sinx+
2

其中“互为生成”函数的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

如果对于函数f(x)的定义域内任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”;
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
12
成立.
(3)设a、m为实常数,m>0.若f(x)=alnx是区间[m,+∞)上的“平缓函数”,试估计a的取值范围(用m表示,不必证明).

查看答案和解析>>

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)对于(I)中的函数f(x)有下列性质:“若x∈[a,b],则存在x0(a,b)使得
f(b)-f(a)
b-a
=f′(x0)”成立.利用这个性质证明x0唯一;
(Ⅲ)设A、B、C是函数f(x)=ln(1+ex)-x(x∈R)图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

3、如果命题“p且q”为真命题,那么下列结论中正确的是(  )
①“p或q”为真命题;
②“p或q”为假命题;
③“非p或非q”为真命题;
④“非p或非q”为假命题.

查看答案和解析>>

如果函数f(x)在区间D上有定义,且对任意x1,x2∈D,x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
,则称函数f(x)在区间D上的“凹函数”.
(Ⅰ)已知f(x)=ln(1+ex)-x(x∈R),判断f(x)是否是“凹函数”,若是,请给出证明;若不是,请说明理由;
(Ⅱ)已知f(x)=ln(1+ex)-x是定义域在R上的减函数,且A、B、C是其图象上三个不同的点,求证:△ABC是钝角三角形.

查看答案和解析>>

 

第Ⅰ卷(选择题,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

1.3.5

第Ⅱ卷(非选择题,共100分)

二、填空题

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答题

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在时,

   

   

    在时,为减函数

    从而的单调递减区间为;…………(文8分)

   (2)(理科)  

    当时,由得单调递减区间为

    同理,当时,函数的单调递减区间为…………(理8分)

   (3)当,变换过程如下:

    1°将的图象向右平移个单位可得函数的图象。

    2°将所得函数图象上每个点的纵坐标扩大为原来的倍,而横坐标保持不变,可得函数的图象。

    3°再将所得图象向上平移一个单位,可得的图象……(12分)

   (其它的变换方法正确相应给分)

17.解:(1)三棱柱ABC―A1B1C1为直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1为直三棱柱

    底面ABC

    为直线B1C与平面ABC所成的角,即

    过点A作AM⊥BC于M,过M作MN⊥B1C于N,加结AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂线定理知AN⊥B1C从而∠ANM为二面角B―B1C―A的平面角。

    设AB=BB1=

    在Rt△B1BC中,BC=BB1

  

    即二面角B―B1C―A的正切值为 …………(文12分)

   (3)(理科)过点A1作A1H⊥平面B1AC于H,连结HC,则

    ∠A1CH为直线A1C与平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)从口袋A中摸出的3个球为最佳摸球组合即为从口袋A中摸出2个红球和1个黑球,其概率为

  ………………………………(6分)

   (2)由题意知:每个口袋中摸球为最佳组合的概率相同,从5个口袋中摸球可以看成5次独立重复试难,故所求概率为

  ……………………………………(12分)

   (理科)(1)设用队获第一且丙队获第二为事件A,则

  ………………………………………(6分)

   (2)可能的取值为0,3,6;则

  甲两场皆输:

  甲两场只胜一场:

0

3

6

P

 

  的分布列为

 

 

 

  …………………………(12分)

19.解:(文科)(1)由

  函数的定义域为(-1,1)

  又

  

  …………………………………(6分)

   (2)任取

  

  

  

  又

  ……(13分)

   (理科)(1)由

  

又由函数

  当且仅当

  

  综上…………………………………………………(6分)

   (2)

  

②令

综上所述实数m的取值范围为……………(13分)

20.解:(1)的解集有且只有一个元素

  

  又由

  

  当

  当

     …………………………………(文6分,理5分)

   (2)         ①

    ②

由①-②得

…………………………………………(文13分,理10分)

   (3)(理科)由题设

       

       综上,得数列共有3个变号数,即变号数为3.……………………(理13分)

21.解(1)

 ………………………………(文6分,理4分)(2)(2)当AB的斜率为0时,显然满足题意

当AB的斜率不为0时,设,AB方程为代入椭圆方程

整理得

 

综上可知:恒有.………………………………(文13分,理9分)

 


同步练习册答案