18. 有A.B.C.D.E共5个口袋.每个口袋装有大小和质量均相同的4个红球和2个黑球.现每次从其中一个口袋中摸出3个球.规定:若摸出的3个球恰为2个红球和1个黑球.则称为最佳摸球组合. (1)求从口袋A中摸出的3个球为最佳摸球组合的概率, (2)现从每个口袋中摸出3个球.求恰有3个口袋中摸出的球是最佳摸球组合的概率. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)   

某电视生产厂家有A、B两种型号的电视机参加家电下乡活动.若厂家投放A、B型号电视机的价值分别为p、q万元,农民购买电视机获得相应的补贴分别为已知厂家把价值为10万元的A、B两种型号的电视机投放市场,且A、B两种型号的电视机投放金额都不低于1万元(精确到0.1,参考数据:).

(1)请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值;

(2)讨论农民得到的补贴随厂家投放B型号电视机金额的变化而变化的情况.

 

查看答案和解析>>

(本小题满分12分)

中,角A、B、C的对边分别为,已知,且

   (1)求角C的大小;

   (2)求ABC的面积.

 

查看答案和解析>>

(本小题满分12分)

在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.

  (Ⅰ)求角B的值;

  (Ⅱ)已知函数f(x)=2cos(2x-B),将f(x)的图象向左平移后得到函数g(x)的图象,求g(x)的单调增区间.

 

 

查看答案和解析>>

(本小题满分12分)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,

   (Ⅰ)求的值;

   (Ⅱ)设的值。

 

查看答案和解析>>

(本小题满分12分) 已知的角A、B、C所对的边分别是

设向量,

(Ⅰ)若,求证:为等腰三角形;

(Ⅱ)若,边长,求的面积.

 

查看答案和解析>>

 

第Ⅰ卷(选择题,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

1.3.5

第Ⅱ卷(非选择题,共100分)

二、填空题

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答题

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在时,

   

   

    在时,为减函数

    从而的单调递减区间为;…………(文8分)

   (2)(理科)  

    当时,由得单调递减区间为

    同理,当时,函数的单调递减区间为…………(理8分)

   (3)当,变换过程如下:

    1°将的图象向右平移个单位可得函数的图象。

    2°将所得函数图象上每个点的纵坐标扩大为原来的倍,而横坐标保持不变,可得函数的图象。

    3°再将所得图象向上平移一个单位,可得的图象……(12分)

   (其它的变换方法正确相应给分)

17.解:(1)三棱柱ABC―A1B1C1为直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1为直三棱柱

    底面ABC

    为直线B1C与平面ABC所成的角,即

    过点A作AM⊥BC于M,过M作MN⊥B1C于N,加结AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂线定理知AN⊥B1C从而∠ANM为二面角B―B1C―A的平面角。

    设AB=BB1=

    在Rt△B1BC中,BC=BB1

  

    即二面角B―B1C―A的正切值为 …………(文12分)

   (3)(理科)过点A1作A1H⊥平面B1AC于H,连结HC,则

    ∠A1CH为直线A1C与平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)从口袋A中摸出的3个球为最佳摸球组合即为从口袋A中摸出2个红球和1个黑球,其概率为

  ………………………………(6分)

   (2)由题意知:每个口袋中摸球为最佳组合的概率相同,从5个口袋中摸球可以看成5次独立重复试难,故所求概率为

  ……………………………………(12分)

   (理科)(1)设用队获第一且丙队获第二为事件A,则

  ………………………………………(6分)

   (2)可能的取值为0,3,6;则

  甲两场皆输:

  甲两场只胜一场:

0

3

6

P

 

  的分布列为

 

 

 

  …………………………(12分)

19.解:(文科)(1)由

  函数的定义域为(-1,1)

  又

  

  …………………………………(6分)

   (2)任取

  

  

  

  又

  ……(13分)

   (理科)(1)由

  

又由函数

  当且仅当

  

  综上…………………………………………………(6分)

   (2)

  

②令

综上所述实数m的取值范围为……………(13分)

20.解:(1)的解集有且只有一个元素

  

  又由

  

  当

  当

     …………………………………(文6分,理5分)

   (2)         ①

    ②

由①-②得

…………………………………………(文13分,理10分)

   (3)(理科)由题设

       

       综上,得数列共有3个变号数,即变号数为3.……………………(理13分)

21.解(1)

 ………………………………(文6分,理4分)(2)(2)当AB的斜率为0时,显然满足题意

当AB的斜率不为0时,设,AB方程为代入椭圆方程

整理得

 

综上可知:恒有.………………………………(文13分,理9分)

 


同步练习册答案