如图.椭圆和双曲线的右焦点.A.B 为椭圆和双曲线的公共顶点.P.Q分别为双曲线和椭圆上不同于A.B的第一象限内的点. 查看更多

 

题目列表(包括答案和解析)

如图,A、B分别是椭圆的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4且k1+k2+k3+k4=0.(1)求证:O、P、Q三点共线;(O为坐标原点)
(2)设F1、F2分别是椭圆和双曲线的右焦点,已知PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

如图,A、B分别是椭圆的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4且k1+k2+k3+k4=0.(1)求证:O、P、Q三点共线;(O为坐标原点)
(2)设F1、F2分别是椭圆和双曲线的右焦点,已知PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

如图,A、B分别是椭圆的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4且k1+k2+k3+k4=0.(1)求证:O、P、Q三点共线;(O为坐标原点)
(2)设F1、F2分别是椭圆和双曲线的右焦点,已知PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

 

查看答案和解析>>

 

如图,已知椭圆的离心率

,以该椭圆上的点和椭圆的左、右焦点

为顶点的三角形的周长为,一等轴双曲线

的顶点是该椭圆的焦点,设P为该双曲线上异于项点

的任一点,直线与椭圆的交点分别为A、

B和C、D.

   (Ⅰ)求椭圆和双曲线的标准方程;

   (Ⅱ)设直线的斜率分别为,证明:

   (Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

  

 

 

查看答案和解析>>


同步练习册答案