∴a=4时.h(a)有极大值为96.∴h(a)在上的最大值是96. 查看更多

 

题目列表(包括答案和解析)

(2012•蓝山县模拟)定义F(x,y)=(1+x)y,其中x,y∈(0,+∞).
(1)令函数f(x)=F(1,log2(x3+ax2+bx+1)),其图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围;
(2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x0∈[1,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(3)当x,y∈N,且x<y时,求证:F(x,y)>F(y,x).

查看答案和解析>>

已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
1
λ

(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.
①若M是圆E:(x-2)2+(y-4)2=64上任意一点,过M作曲线D的切线,切点是N,求|MN|的取值范围;
②已知F,G是曲线D上不同的两点,对于定点Q(-3,0),有|QF|•|QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x,y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,2x-y的最大值为(  )

查看答案和解析>>

如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是(  )

查看答案和解析>>

定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函数f(x)=F(3,log2(2x-x2+4)),写出函数f(x)的定义域;
(Ⅱ)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围
(Ⅲ)当x,y∈N*且x<y时,求证F(x,y)>F(y,x).

查看答案和解析>>


同步练习册答案