(2)求经过.交点的直线的直角坐标方程. 查看更多

 

题目列表(包括答案和解析)

直角坐标系中,O为坐标原点,设直线经过点,且与轴交于

点F(2,0)。

   (I)求直线的方程;

   (II)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。

查看答案和解析>>

直角坐标系中,O为坐标原点,设直线经过点,且与轴交于
点F(2,0)。
(I)求直线的方程;
(II)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。

查看答案和解析>>

在直角坐标系xoy中,已知三点A(-1,0),B(1,0),C(-1,
3
2
);以A、B为焦点的椭圆经过C点,
(1)求椭圆方程;
(2)设点D(0,1),是否存在不平行于x轴的直线l,与椭圆交于不同的两点M、N,使(
PM
+
PN
)•
MN
=0?
若存在.求出直线l斜率的取值范围;
(3)对于y轴上的点P(0,n)(n≠0),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使(
PM
+
PN
)•
MN
=0,试求实数n的取值范围.

查看答案和解析>>

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=
π6

(I)写出直线l的参数方程;
(II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

在直角坐标系中,O为坐标原点,直线l经过点P(3,
2
)及双曲线
x2
3
-y2=1
的右焦点F.
(1)求直线l的方程;
(2)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程;
(3)若在(1)、(2)情形下,设直线l与椭圆的另一个交点为Q,且
PM
PQ
,当|
OM
|最小时,求λ的值.

查看答案和解析>>

一、填空题

1、        2、40    3、②  ④)    4、-1     5、    6、3

7、       8、   9、1   10、    11、    12、46    13、

14、(3)(4)

 

二、解答题

15、解:(1)∵a⊥b,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),

故a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.……………………………………………6分

∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分

(2)∵α∈(),∴

由tanα=-,求得=2(舍去).

,…………………………………………………………12分

cos()=

              =. ………………………14分

 

16、证明:(1)连结,在中,分别为的中点,则

       

(2)

(3)

     且 

   即    

=

=     

 

17、解:由已知圆的方程为

平移得到.

.

.                                                      

,且,∴.∴.

的中点为D.

,则,又.

的距离等于.

,           ∴.

∴直线的方程为:.      

 

18、(1)在△ADE中,y2=x2+AE2-2x?AE?cos60°y2=x2+AE2-x?AE,①

又S△ADE= S△ABC=a2=x?AE?sin60°x?AE=2.②

②代入①得y2=x2+-2(y>0), ∴y=(1≤x≤2)。。。.6分

(2)如果DE是水管y=,

当且仅当x2=,即x=时“=”成立,故DE∥BC,且DE=.

如果DE是参观线路,记f(x)=x2+,可知

函数在[1,]上递减,在[,2]上递增,

故f(x) max=f(1)=f(2)=5.  ∴y max=.

即DE为AB中线或AC中线时,DE最长.。。。。。。。。。。。8分

 

 

 

 

19、解:(1)由

是首项为,公比为的等比数列

时, 

所以                                             

(2)由得:

(作差证明)

  

综上所述当 时,不等式对任意都成立.

 

  20.解.(1)   

时,,此时为单调递减

时,,此时为单调递增

的极小值为                             

(2)的极小值,即的最小值为1

    令

    当

上单调递减

             

时,

(3)假设存在实数,使有最小值3,

①当时,由于,则

函数上的增函数

解得(舍去)                        

②当时,则当时,

此时是减函数

时,,此时是增函数

解得                                       

 

 

理科加试题

1、(1)“油罐被引爆”的事件为事件A,其对立事件为,则P()=C

∴P(A)=1-             答:油罐被引爆的概率为

(2)射击次数ξ的可能取值为2,3,4,5,

       P(ξ=2)=,   P(ξ=3)=C     ,

P(ξ=4)=C, P(ξ=5)=C    

ξ

2

3

4

5

P

        故ξ的分布列为:

                                                                                         

Eξ=2×+3×+4×+5×=  

 

2、解:(1)由图形可知二次函数的图象过点(0,0),(8,0),并且f(x)的最大值为16

∴函数f(x)的解析式为

(2)由

∵0≤t≤2,∴直线l1与f(x)的图象的交点坐标为(

由定积分的几何意义知:

 

3、解:在矩阵N=  的作用下,一个图形变换为其绕原点逆时针旋转得到的图形,在矩阵M=  的作用下,一个图形变换为与之关于直线对称的图形。因此

△ABC在矩阵MN作用下变换所得到的图形与△ABC全等,从而其面积等于△ABC的面积,即为1

 

4、解:以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(1),由

所以

的直角坐标方程.

同理的直角坐标方程.

(2)由解得

交于点.过交点的直线的直角坐标方程为

 

 

 


同步练习册答案