得:.可知: ---8分 查看更多

 

题目列表(包括答案和解析)

如图,已知⊙中,直径垂直于弦,垂足为延长线上一点,切⊙于点,连接于点,证明:

【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据为⊙的切线,∴为弦切角

连接   ∴…注意到是直径且垂直弦,所以 且…利用,可以证明。

解:∵为⊙的切线,∴为弦切角

连接   ∴……………………4分

又∵  是直径且垂直弦  ∴   且……………………8分

    ∴

 

查看答案和解析>>

(本小题满分12分)一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会。已知该大学通过以下任何一种方式都可被录取:

① 2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);

② 2010年3月自主招生考试通过并且2010年6月高考分数达重点线;

③ 2010年6月高考达到该校录取分数线(该校录取分数线高于重点线)。

该名考生竞赛获省一等奖、自主招生考试通过、高考达重点线、高考达该校分数线等事件的概率如下表:

事件

省数学竞获一等奖

自主招生考试通过

高考达重点线

高考达该校分数线

概率

0.5

0.7

0.8

0.6

如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4。

(1)求该学生参加自主招生考试的概率;

(2)求该学生参加考试次数的分布列与数学期望;

(3)求该学生被该大学录取的概率。

查看答案和解析>>

(本小题满分12分)一名高二学生盼望进入某名牌大学学习,不放弃能考入该大学的任何一次机会。已知该大学通过以下任何一种方式都可被录取:

① 2010年2月国家数学奥赛集训队考试通过(集训队从2009年10月省数学竞赛壹等奖获得者中选拔,通过考试进入集训队则能被该大学提前录取);

② 2010年3月自主招生考试通过并且2010年6月高考分数达重点线;

③ 2010年6月高考达到该校录取分数线(该校录取分数线高于重点线)。

该名考生竞赛获省一等奖、自主招生考试通过、高考达重点线、高考达该校分数线等事件的概率如下表:

事件

省数学竞获一等奖

自主招生考试通过

高考达重点线

高考达该校分数线

概率

0.5

0.7

0.8

0.6

如果数学竞赛获省一等奖,该学生估计自己进入国家集训队的概率是0.4。

(1)求该学生参加自主招生考试的概率;

(2)求该学生参加考试次数的分布列与数学期望;

(3)求该学生被该大学录取的概率。

查看答案和解析>>

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4-i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>


同步练习册答案