1.与方程有关的问题 查看更多

 

题目列表(包括答案和解析)

教材上一例问题如下:
一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表,试建立y与x之间的回归方程.
温度x/℃21232527293235
产卵数y/个711212466115325
某同学利用智能手机上的Mathstudio软件研究它时(如图所示),分别采用四种模型,所得结果如下:

模型y=ax+by=aebxy=ax2+cy=ax3+bx2+cx+d
计算结果
a=19.87
b=-463.731
v=0.864
a=0.015
b=0.284
v=0.993
a=0.367
c=-202.171
v=0.896
a=0.271
b=-20.171
c=801.638
v=0.995
根据上表,易知当选择序号为______的模型是,拟合效果较好.

查看答案和解析>>

(本题满分15分)抛物线的方程是,曲线关于点 对称.(Ⅰ)求曲线的方程; (Ⅱ)过点(8,0)的直线交曲线于M、N两点,问在坐标平面上能否找到某个定点,不论直线如何变化,总有。若找不到,请说明理由;若能找到,写出满足要求的所有的点的坐标.

 

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:

AB=|x1-x2|=

参考以上定理和结论,解答下列问题:

设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

 

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=

参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记,,(AB、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断            (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

1.B   提示:在同一坐标系中画出两函数y = a |x|与y = |log a x|图象,如图

 

2.D提示: 如图|OM| = 2,|AM| = ,|OA| = 1,∴k = tan∠AOM = 。

 

 

 

 

 

 

3.B提示: A=[0,4],B=[-4,0],

4.D

5.B    提示:如图

6.C  提示:而|z|表示

7.A  提示:T=2×8=16,则,令

8.A  提示:在同一坐标系中作出函数的图象,易得。

9.A  提示:在同一坐标系中画出函数y=4x+1,y=x+2和y=-2x+4的图象,由图可知,f(x)的最高点为

10.D  提示:由可行域易知z=5x+y过点(1,0)时取得最大值5.

11.B 提示: f(x)= f(-x)= f(2-x),故f(x)的草图如图:

由图可知,B正确。

12.C提示:设椭圆另一焦点为F2,(如图),,又注意到N、O各为MF1、F1F2的中点, ∴ON是△MF1F2的中位线, 

13.f (1) < f (4) < f (- 3)提示:由f (2 + t) = f (2 ? t)知,f(x)的图象关于直线x=2对称,又f (x) = x 2 + bx + c为二次函数,其图象是开口向上的抛物线,由f(x)的图象,易知f (1) < f (4) < f (- 3).

14.1 < m < 5提示:设y 1 = x 2 ? 4|x| + 5,y 2 = m,画出两函数图象示意图,要使方程x 2 ? 4|x| + 5 = m有四个不相等实根,只需使1 < m < 5.

 

 

 

 

 

 

15.

提示:y=x-m表示倾角为45°,纵截距为-m的直线方程,而则表示以(0,0)为圆心,以1为半径的圆在x轴上方的部分(包括圆与x轴的交点),如下图所示,显然,欲使直线与半圆有两个不同交点,只需直线的纵截距,即.

 

 

 

 

 

 

16、

九、实战演习

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 方程的实根的个数为(    )

    A. 1个      B. 2个      C. 3个      D. 4个

    2. 函数的图象恰有两个公共点,则实数a的取值范围是(    )

    A.                    B.

    C.            D.

   3. 若不等式的解集为则a的值为(     )

    A. 1            B. 2            C. 3            D. 4

   4. 若时,不等式恒成立,则a的取值范围为(    )

A. (0,1)     B. (1,2)     C. (1,2]      D. [1,2]

   5  已知f(x)=(x?a)(x?b)?2(其中ab,且αβ是方程f(x)=0的两根(αβ,则实数abαβ的大小关系为(    )

A  αabβ            B  αaβb

C  aαbβ            D  aαβb

6.已知x+y+1=0,则的最小值是(    )

A.   B.     C.   D..

7.如图,是周期为的三角函数y=f(x)的图像,那么f(x)可以写成(    )

A.sin(1+x)     B.sin(-1-x)     C.sin(x-1)     D.sin(1-x)

8.方程x+log3x=2,x+log2x=2的根分别是α、β,那么α与β的大小关系是(    )

A.α>β     B.α<β    C.α=β    D.不确定.

9.

   

10. 在约束条件下,当时,目标函数的最大值的变化范围是(    )

A.         B.    C.         D.

11. 若不等式在(0,)内恒成立,则a的取值范围(   )

A.[ ,1)     B.( ,1)       C.(0, )     D.(0, ]

12.已知,关于x的方程有两个不同的实数解,则实数a的取值范围是(    )

A.[-2,2]     B.[,2]     C.( ,2]      D.( ,2)

二、填空题:本大题共4小题,每小题4分,共16分,请把答案直接填在题中横线上.

13.曲线y=1+ (?2≤x≤2)与直线y=r(x?2)+4有两个交点时,实数r的取值范围___________.

14 . 若关于x的方程有四个不相等的实根,则实数m的取值范围为___________。

15.  函数的最小值为___________。  

16. 对于每个实数x,设f(x)是4x+1,x+2和-2x+4三者中的最小者,则f(x)的最大值为_________.

三、解答题:本大题共6小题,共74分,解答应写出必要的文字说明、证明过程或演算步骤.

    17. (12分)若不等式的解集为A,且,求a的取值范围。

    18.(12分)设,试求方程有解时k的取值范围。

19 (12分)已知圆C:(x+2)2+y2=1,点P(x,y)为圆C上任一点.

⑴求的最值.       ⑵求x-2y的最值.

20. (12分)设A={(x,y)|y=,a>0},B={(x,y)|(x?1)2+(y?)2=a2,a>0},且AB,求a的最大值与最小值 

21. (12分)设f(x)=,a,b∈R,且a≠b.求证:|f(a)-f(b)|<|a-b|.

22  (12分)已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点       求|PF1|+|PA|的最大值和最小值 

参考答案:

一、选择题

    1. C   解析:画出在同一坐标系中的图象,即可。

  2. D   解析:画出的图象

           

    情形1:              情形2:

3. B  解析:画出的图象,依题意,从而

  4. C  解析:令,画出两函数图象.

      

        a>1                              

若a>1,当时,要使,只需使,∴

,显然当时,不等式恒不成立。

5  A  解析  a,b是方程g(x)=(x?a)(x?b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示 

6. B 解析:方程x+y+1=0表示直线,而式子表示点(1,1)到直线上点的距离,因此式子的最小值就是点(1,1)到直线x+y+1=0的距离,由点到直线的距离公式可求.

7. D  解析:由周期为得,ω=1,令1×1+φ=得, φ=-1.所以y=sin(x+-1)=-sin(x-1)=sin(1-x).

8. A 解析:由题意有, log3x=2-x, log2x=2-x,在同一坐标系中作出y=log3x,y=log2x,y=2-x的图像,

易见α>β.

9. D  解析:k=tan60°=.

     

        (9题图)                             (10题图)

10. 解析:画出可行域如图

,∴在图中A点和B点处,目标函数z分别取得最大值的最小和最大.

∴zmax∈[7,8].故选D.

11. 解析:不等式变形为,令y1=x2,y2=logax,如图

函数y2过点A()时,a=,为满足条件的a边界,故a的范围是≤a<1.

 

    

       (11题图)                       (12题图)

12.D. 解析:在坐标系中画出y=的图象.

二、填空题

13. (]  解析  方程y=1+的曲线为半圆,y=r(x?2)+4为过(2,4)的直线.     14.   解析:设

画出两函数图象示意图,要使方程有四个不相等实根,只需使.

 15. 解析:对,它表示点(x,1)到(1,0)的距离;表示点(x,1)到点(3,3)的距离,于是表示动点(x,1)到两个定点(1,0)、(3,3)的距离之和,结合图形,易得

16. 解析:在同一坐标系中画出三个函数的图像,如图, 由图知, f(x)的最高点为A(),

所以, f(x)的最大值为.

三、解答题

  17. 解:令表示以(2,0)为圆心,以2为半径的圆在x轴的上方的部分(包括圆与x轴的交点),如下图所示,表示过原点的直线系,不等式的解,即是两函数图象中半圆在直线上方的部分所对应的x值。

由于不等式解集, 因此,只需要

    ∴a的取值范围为(2,+)。

       

      (17题图)                              (18题图)

18. 解:将原方程化为:

    ∴

    令,它表示倾角为45°的直线系,

    令,它表示焦点在x轴上,顶点为(-a,0)(a,0)的等轴双曲线在x轴上方的部分,

原方程有解,则两个函数的图象有交点,由图知,

.   ∴k的取值范围为

19 解:

   (1)                                   (2)

(1)设Q(1,2),则的最值分别为过Q点的圆C的两条切线的斜率.如图

设PQ:y-2=k(x-1),即kx-y+2-k=0

,∴k=或k=.

的最大值为,最小值为.

(2)令x-2y=b,即x-2y―b=0,为一组平行直线系,则x-2y=b的最值就是直线与圆相切时.如图

得,b=-2+,或b=-2-.

∴x-2y的最大值为-2+,最小值为-2-.

20.解  ∵集合A中的元素构成的图形是以原点O为圆心,a为半径的半圆;集合B中的元素是以点O′(1,)为圆心,a为半径的圆  如图所示 

AB,∴半圆O和圆O′有公共点 

∴当半圆O和圆O′外切时,a最小.∴a+a=|OO′|=2,∴amin=2?2

当半圆O与圆O′内切时, a最大a?a=|OO′|=2,∴amax=2+2 

21.解:由y=得,y2-x2=1(y>x),表示的曲线为双曲线的上支,且此双曲线的渐近线为y=±x.

在曲线上任取两点A(a,f(a)),A(b,f(b)),其斜率为k,由双曲线性质得|k|<1.

,∴|f(a)-f(b)|<|a-b|.

     

      (21题图)                             (22题图)

22  解  由可知a=3,b=,c=2,左焦点F1(?2,0),右焦点F2(2,0) 

如图  由椭圆定义,|PF1|=2a?|PF2|=6?|PF2|,

∴|PF1|+|PA|=6?|PF2|+|PA|=6+|PA|?|PF2

由||PA|?|PF2||≤|AF2|=

?≤|PA|?|PF2|≤  (当PAF2延长线上的P2处时,取右“=”号;

PAF2的反向延长线的P1处时,取左“=”号 )

即|PA|?|PF2|的最大、最小值分别为,? 

于是|PF1|+|PA|的最大值是6+,最小值是6? 


同步练习册答案