A.∠B+∠A=∠C. B. ∠A:∠B:∠C=2:3:5.C. ∠A=2∠B=3∠C. D. 一个外角等于和它相邻的一个内角. 查看更多

 

题目列表(包括答案和解析)

以下命题:
①同一平面内的两条直线不平行就相交;
②三角形的外角必定大于它的内角;
③两边和其中一边的对角对应相等的两个三角形全等;
④两个全等三角形的面积相等。其中的真命题是
[     ]
A.①、③
B.①、④
C.①、②、④
D.②、③、④

查看答案和解析>>

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2。将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H。
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由。

查看答案和解析>>

在以下5个命题中:①圆内两条不平行的弦的垂直平分线的交点一定是圆心;②圆心到直线的距离不大于半径,则这条直线和圆相交; ③ 相等的圆心角所对的弧的度数相等;④ 圆的切线垂直于圆的半径; ⑤ 两圆没有公共点则它们的位置关系是外离。其中是正确命题的序号(       ).(请把你认为正确的命题序号都填上)

查看答案和解析>>

【答案】60°。

【考点】平行线的性质;三角形的外角性质.

【分析】利用三角形的一个外角等于与它不相邻的两个内角的和求出∠3的同位角的度数,再根据两直线平行,同位角相等即可求解.

【解答】如图,∵∠1=130°,∠2=70°,

∴∠4=∠1-∠2=130°-70°=60°,

ab

∴∠3=∠4=60°.

故答案为:60°.

【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,准确识图,理清图中各角度之间的关系是解题的关键.

查看答案和解析>>

重庆市垫江县具有2000多年的牡丹种植历史.每年3月下旬至4月上旬,主要分布在该县太平镇、澄溪镇明月山一带的牡丹迎春怒放,美不胜收.由于牡丹之根———丹皮是重要中药材,目前已种植有60多个品种2万余亩牡丹的垫江,因此成为我国丹皮出口基地,获得“丹皮之乡”的美誉。为了提高农户收入,该县决定在现有基础上开荒种植牡丹并实行政府补贴,规定每新种植一亩牡丹一次性补贴农户若干元,经调查,种植亩数(亩)与补贴数额(元)之间成一次函数关系,且补贴与种植情况如下表:

补贴数额(元)

     10

      20

    ……

种植亩数(亩)

     160

      240

……

随着补贴数额的不断增大,种植规模也不断增加,但每亩牡丹的收益(元)会相应降低,且该县补贴政策实施前每亩牡丹的收益为3000元,而每补贴10元(补贴数为10元的整数倍),每亩牡丹的收益会相应减少30元.

(1)分别求出政府补贴政策实施后,种植亩数(亩)、每亩牡丹的收益(元)与政府补贴数额(元)之间的函数关系式;

(2)要使全县新种植的牡丹总收益(元)最大,又要从政府的角度出发,政府应将每亩补贴数额定为多少元?并求出总收益的最大值和此时种植亩数;(总收益=每亩收益×亩数)

(3)在(2)问中取得最大总收益的情况下,为了发展旅游业,需占用其中不超过50亩的新种牡丹园,利用其树间空地种植刚由国际牡丹园培育出的“黑桃皇后”.已知引进该新品种平均每亩的费用为530元,此外还要购置其它设备,这项费用(元)等于种植面积(亩)的平方的25倍.这样混种了“黑桃皇后”的这部分土地比原来种植单一品种牡丹时每亩的平均收益增加了2000元,这部分混种土地在扣除所有费用后总收益为85000元.求混种牡丹的土地有多少亩?(结果精确到个位)(参考数据:)

 

查看答案和解析>>


同步练习册答案