(Ⅱ)若直线 与双曲线 G相交于P.Q两点.且以PQ为直径的圆过双曲线G的右顶点D.求证:直线过定点'并求出该点的坐标 , 大庆市高三年级第一次教学质量检测 查看更多

 

题目列表(包括答案和解析)

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为数学公式的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

已知椭圆G与双曲线12x2-4y2=3有相同的焦点,且过点P(1,
32
)

(1)求椭圆G的方程;
(2)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

如图,直角坐标系xOy中,一直角三角形ABC,∠C=90°,B、C在x轴上且关于原点O对称,D在边BC上,BD=3DC,△ABC的周长为12.若一双曲线E以B、C为焦点,且经过A、D两点.
(1)求双曲线E的方程;
(2)若一过点P(m,0)(m为非零常数)的直线l与双曲线E相交于不同于双曲线顶点的两点M、N,且
MP
PN
,问在x轴上是否存在定点G,使
BC
⊥(
GM
GN
)
?若存在,求出所有这样定点G的坐标;若不存在,请说明理由.

查看答案和解析>>

 一、选择题

 

 

 

二.填空题

(13)         (14)10;         (15)180;           (16)① ③④

 三.解答题

(17)(本小题满分10分)

解 :

(Ⅰ)

函数 的单调增区间为

(Ⅱ)

 

 

 

 

 (18)(本小题满分12分)

解:(I)当

 (II)由(I)得

  

     

(19)(本小题满分12分)

解:依题意,第四项指标抽检合格的概率为 其它三项指标抽检合格的概率均为

    

    (I)若食品监管部门对其四项质量指标依次进行严格的检测,恰好在第三项指标检测结束

时,  能确定该食品不能上市的概率等于第一、第二项指标中恰有一项不合格而且第三项指标不合格的概率.

 

 

  (II)该品牌的食品能上市的概率等于四项指标都含格或第一、第二、第三项指标中仅有

一项不合格且第四项指标合格的概率.

 

(20)(本小题满分12分)

解法1:(I)取A1C1中点D,连结B1D,CD.

C1C=AlA=AlC, CD⊥AlCl

底面 ABC是边长为2的正三角形,

AB=BC=2,A1B1=BlCl=2,

B1D⊥AlCl

BlDCD=D,A1C1平面B1CD, A1C1B1C

(II) 面A1ACCl⊥底面ABC,面AlACC1⊥A1BlC1

又B1D⊥AlC1 BID⊥面A1CCl  

过点D作DE⊥A1C,连BlE,则BlE⊥AlC

B1ED为所求二面角的平面角  

 又A1A⊥A1C, C1C⊥A1C,又D是A1C1的中点,

     

  故所求二面角B1一A1C―C1的大小为arctan

解法2:(I)取AC中点O,连结BO,   ABC是正三角形 BO⊥AC    

又面 A1ACC1⊥底面ABC,BO⊥面A1ACC1 , BO⊥OA1

又AlA=A1CA1O⊥AC,如图建立空间直角坐标系O一xyz

(Ⅱ)为平面A1B1C的一个法向量,

 

故二面角B1-A1C-C1的大小为arccos

(21)(本小题满分12分)  。

  解:(I)曲线 在点( 0,)处的切线与 轴平行  

 

     (II)由c=0,方程 可化为

假没存在实数b使得此方程恰有一个实数根,

  此方程恰有一个实根

②若b>o,则  的变化情况如下

 

 

③若b<o,则  的变化情况如下

 

综合①②③可得,实数b的取值范围是

 

(22)解:, (Ⅰ)由题意设双曲线的标准方程为

由已知得

 

 双曲线G的标准方程为

(Ⅱ)

 

 

化简整理得,

www.ks5u.com

 


同步练习册答案