题目列表(包括答案和解析)
(14分)一个袋中有8个大小相同的小球,其中红球1个,白球和黑球若干,现从袋中有放回地取球,每次随机取一个,又知连续取两次都是白球的概率为1/4.
(Ⅰ)求该口袋内白球和黑球的个数;
(Ⅱ)规定取出1个红球得2分,取出1个白色球得1分,取出1个黑色球得0分,连续取三次分数之和为4分的概率;
(Ⅲ)现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取,乙后取,然后甲在取,直到两个小朋友中有1人取得黑球时游戏终止,每个球在每一次被取出的机会均相同,求当游戏终止时,取球次数不多于3次的概率.
(本小题满分13分)
一个口袋中有2个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖。
(1)试用含的代数式表示一次摸球中奖的概率P;
(2)若,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为,当为何值时,最大。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com