定义的“倒平均数 为.已知数列前项的“倒平均数 为. 查看更多

 

题目列表(包括答案和解析)

(12分)定义的“倒平均数”为,已知数列项的“倒平均数”为

    (1)记,试比较的大小;

    (2)是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.

查看答案和解析>>

定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

(2013•嘉定区一模)定义x1,x2,…,xn的“倒平均数”为
n
x1+x2+…+xn
(n∈N*).已知数列{an}前n项的“倒平均数”为
1
2n+ 4
,记cn=
an
n+1
(n∈N*).
(1)比较cn与cn+1的大小;
(2)设函数f(x)=-x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求
lim
n→∞
Tn

查看答案和解析>>

定义x1,x2,…,xn的“倒平均数”为(n∈N*).已知数列{an}前n项的“倒平均数”为,记cn=(n∈N*).
(1)比较cn与c n+1的大小;
(2)设函数f(x)=﹣x2+4x,对(1)中的数列{cn},是否存在实数λ,使得当x≤λ时,f(x)≤cn对任意n∈N*恒成立?若存在,求出最大的实数λ;若不存在,说明理由.
(3)设数列{bn}满足b1=1,b2=b(b∈R且b≠0),bn=|bn﹣1﹣bn﹣2|(n∈N*且n≥3),且{bn}是周期为3的周期数列,设Tn为{bn}前n项的“倒平均数”,求Tn

查看答案和解析>>

(本题满分16分)定义,…,的“倒平均数”为).已知数列项的“倒平均数”为,记).

(1)比较的大小;

(2)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.

(3)设数列满足),),且是周期为的周期数列,设项的“倒平均数”,求

 

查看答案和解析>>

1.B  2.D  3.A  4.B  5.C  6.D  7.A  8.B  9.C  10.C

11.2   12.   13.0  14.  15.96

16.解:(1)依题意:,即,又

∴  ,∴ 

(2)由三角形是锐角三角形可得,即

     由正弦定理得∴ 

∴ 

  ∵   ,∴ 

∴      即

17.设,则=,,

,又,

.

(2)=,

18解:(1)记数列的前项和为,则依题有

,故

故数列的通项为.故,易知,

(2)假设存在实数,使得当时,对任意恒成立,则对任意都成立,,

,有.故存在最大的实数符合题意.

19. 20. 解:设该学生选修甲、乙、丙的概率分别为x、y、z

       依题意得                      

       (1)若函数R上的偶函数,则=0       

       当=0时,表示该学生选修三门功课或三门功课都没选.

      

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

       ∴事件A的概率为0.24                                                      

   (2)依题意知的的取值为0和2由(1)所求可知

P(=0)=0.24 P(=2)=1- P(=0)=0.76

的分布列为

0

2

P

0.24

0.76

的数学期望为E=0×0.24+2×0.76=1.52                       

20. (1)由题意可知,又,解得

椭圆的方程为

(2)由(1)得,所以.假设存在满足题意的直线,设的方程为

,代入,得

,则   ①

的方向向量为,

; 时,,即存在这样的直线;

时,不存在,即不存在这样的直线 .

21.(1) 必要性 : ,又  ,即

充分性 :设 ,对用数学归纳法证明

        当时,.假设

        则,且

,由数学归纳法知对所有成立

     (2) 设 ,当时,,结论成立

         当 时,

          ,由(1)知,所以  且   

         

         

         

(3) 设 ,当时,,结论成立

 当时,由(2)知

  w.w.w.k.s.5.u.c.o.m    


同步练习册答案