题目列表(包括答案和解析)
如图,在三棱锥中,平面平面,,,,为中点.(Ⅰ)求点B到平面的距离;(Ⅱ)求二面角的余弦值.
【解析】第一问中利用因为,为中点,所以
而平面平面,所以平面,再由题设条件知道可以分别以、、为,, 轴建立直角坐标系得,,,,,,
故平面的法向量而,故点B到平面的距离
第二问中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因为,为中点,所以
而平面平面,所以平面,
再由题设条件知道可以分别以、、为,, 轴建立直角坐标系,得,,,,
,,故平面的法向量
而,故点B到平面的距离
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(1)证明:面面;
(2)求与所成的角;
(3)求面与面所成二面角的余弦值.
【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.
(2)建立空间直角坐标系,写出向量与的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.
(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com