3.通过复习不等式的性质及常用的证明方法(比较法.分析法.综合法.数学归纳法等).使学生较灵活的运用常规方法证明不等式的有关问题, 查看更多

 

题目列表(包括答案和解析)

有一杯糖水,重b克,其中含糖a克,现在向糖水中再加m克糖,此时糖水变得更甜了,(其中a,b,m∈
R+)。
(1)请从上面事例中提炼出一个不等式;(要求:①使用题目中字母;②标明字母应满足条件)
(2)利用你学过的证明方法对提炼出的不等式进行证明。

查看答案和解析>>

下列命题中①、归纳是由部分到整体、个别到一般的推理;②、类比是由特殊到特殊的推理;③、演绎推理是一般到特殊的推理;④从推理的结论来看,合情推理的结论不一定正确,有待证明,而演绎推理的结论是一定正确的;⑤、执因索果的证明方法是分析法.其中正确的个数是(  )

查看答案和解析>>

若P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,下列框图表示的证明方法是
综合法
综合法

查看答案和解析>>

我们给出如下定义:对函数y=f(x),x∈D,若存在常数C(C∈R),对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=C
,则称函数f(x)为“和谐函数”,称常数C为函数f(x)的“和谐数”.
(1)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:
.(填“是”或“否”)如果是,写出它的一个“和谐数”:
2
2

(2)请先学习下面的证明方法:
证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,
3
2
是其“和谐数”.
证明过程如下:对任意x1∈[10,100],令
g(x1)+g(x2)
2
=
3
2
,即
lgx1+lgx2
2
=
3
2

x2=
1000
x1
.∵x1∈[10,100],∴x2=
1000
x1
∈[10,100]
.即对任意x1∈[10,100],存在唯一的x2=
1000
x1
∈[10,100]
,使得
g(x)+g(x2)
2
=
3
2
.∴g(x)=lgx为“和谐函数”,
3
2
是其“和谐数”.
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”;
(3)写出一个不是“和谐函数”的函数,并作出证明.

查看答案和解析>>

4、命题“在△ABC中,若∠C是直角,则∠B一定是锐角.”的证明过程如下:
假设∠B不是锐角,则∠B是直角或钝角,即∠B≥90°,
所以∠A+∠B+∠C≥∠A+90°+90°>180°,
这与三角形的内角和等于180°矛盾
所以上述假设不成立,所以∠B一定是锐角.
本题采用的证明方法是(  )

查看答案和解析>>


同步练习册答案