两个圆与的公切线有且 条. 3 若坐标原点在圆的内部.则实数的取值范围是 4 若直线与圆相交.则点与圆的位置关系是 §76直线与圆.圆与圆的位置关系(2) [典型例题] 例1 若圆与.当为何值时:两圆外切, 两圆内切, (5)两圆内含? 变式 已知圆和圆交于两点.则弦的垂直平分线的方程是 -. 例2 求经过两圆与的交点.且圆心在直线上的圆的方程. 变式 已知两个圆. 直线.求经过和的交点且和相切的圆的方程. [课堂小结]1.两圆的位置关系,2.圆系问题. [课堂检测] 查看更多

 

题目列表(包括答案和解析)

已知AD分别为椭圆E的左顶点与上顶点,椭圆的离心率FF2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且OAOBO为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;

(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

已知AD分别为椭圆E的左顶点与上顶点,椭圆的离心率FF2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点AB,且OAOBO为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;
(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

已知A、D分别为椭圆E:=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>

已知A、D分别为椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=
3
2
,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且
PF1
PF2
的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值.

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>


同步练习册答案