设椭圆的上顶点为.椭圆上两点在轴上的射影分别为左焦点和右焦点.直线的斜率为.过点且与垂直的直线与轴交于点.的外接圆为圆. (1)求椭圆的离心率, (2)直线与圆相交于两点.且.求椭圆方程, (3)设点在椭圆C内部.若椭圆C上的点到点N的最远距离不大于.求椭圆C的短轴长的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)设椭圆的上顶点为,椭圆上两点轴上的射影分别为左焦点和右焦点,直线的斜率为,过点且与垂直的直线与轴交于点的外接圆为圆
(1)求椭圆的离心率;
(2)直线与圆相交于两点,且,求椭圆方程;
(3)设点在椭圆C内部,若椭圆C上的点到点N的最远距离不大于,求椭圆C的短轴长的取值范围.

查看答案和解析>>

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.

(1)求椭圆的方程;

(2)求动点C的轨迹E的方程;

(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且 ,求直线MN的方程.

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(1)若直线的斜率之积为,求椭圆的离心率;

(2)对于由(1)得到的椭圆,过点的直线轴于点,交轴于点,若,求直线的斜率.

 

查看答案和解析>>

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且

(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;

(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

 

查看答案和解析>>

设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且

   (1)求椭圆的离心率;

   (2)若过三点的圆恰好与直线相切,求椭圆的方程;

   (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由.

 

查看答案和解析>>


同步练习册答案