21. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)等体积的球和正方体,试比较它们表面积的大小关系.

查看答案和解析>>

(本小题满分10分)数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1000的所有“水仙花数”.
(1)用自然语言写出算法;
(2)画出流程图.

查看答案和解析>>

(本小题满分10分)

已知函数

   (Ⅰ)求函数的最小正周期;

   (Ⅱ)当时,求函数的最大值和最小值.

查看答案和解析>>

(本小题满分10分)已知A,B,C,分别是的三个角,向量

与向量垂直。w.w.w.k.s.5.u.c.o.m        

   (1)求的大小;

   (2)求函数的最大值。

查看答案和解析>>

(本小题满分10分)

      已知的内角所对的边分别为,向量

,且为锐角.

     (Ⅰ)求角的大小;

     (Ⅱ)若,求的面积w.w.w.k.s.5.u.c

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

选项

A

B

B

D

B

D

C

A

B

C

A

D

二、填空题

13、(-¥,-1)È(2,+¥)  14 、2n ? 1   15、45  16、 17、0.94  18、

三、解答题

19、解: 设等比数列{an}的公比为q, 则q≠0, a2= = , a4=a3q=2q

所以 + 2q= , 解得q1= , q2= 3,

当q1=, a1=18.所以 an=18×()n-1= = 2×33-n

当q=3时, a1= , 所以an=×3n-1=2×3n-3

20、解:(1)将函数解析式变形为

   (2)方程f(x)=5的解分别是                和 ,      由于f(x)在(-∞,-1]和[2,5]上单调递减,在[-1,2]和[5,+∞)上单调递增,因此

.   

由于

21、:(1)当a=2时,A=(2,7),B=(4,5)∴ AB=(4,5)

(2)∵ B=(2a,a2+1),

当a<时,A=(3a+1,2)要使BA,必须,此时a=-1;

当a=时,A=,使BA的a不存在;

当a>时,A=(2,3a+1)要使BA,必须,此时1≤a≤3.

综上可知,使BA的实数a的取值范围为[1,3]∪{-1}

22、解:(Ⅰ)求导得

            由于 的图像与直线相切于点

            所以,即:

                  1-3a+3b = -11        解得:

                  3-6a+3b=-12

(Ⅱ)得:

     令f′x)>0,解得 x-1x3;又令f′x)< 0,解得 -1x3.

故当x, -1)时,f(x)是增函数,当 x3,)时,f(x)也是增函数,

但当x-1 3)时,f(x)是减函数.

 


同步练习册答案