函数y=│x│在区间M上是增函数.则区间M为 查看更多

 

题目列表(包括答案和解析)

已知y=f(x)是定义在区间(-∞,0)∪(0,+∞)上的奇函数,且在(0,+∞)上是增函数,f(1)=0.

(1)解不等式f(x)≥0;

(2)设函数g(x)=-x2+mx-2m(x∈[0,1],m∈R),集合M={m|g(x)<0},集合N={m|f[g(x)]<0},求M∩N.

查看答案和解析>>

已知函数f(x)=4sinx·sin2()+cos2x,

(1)设常数ω>0,若y=f(ωx)在区间上是增函数,求ω的取值范围;

(2)设集合,B={x||f(x)-m|<2},若AB,求m的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx+d在x=0处取得极值,且过原点,曲线y=f(x)在P(-1,2)处的切线l的斜率是-3

(1)求f(x)的解析式;

(2)若y=f(x)在区间[2m-1,m+1]上是增函数,数m的取值范围;

(3)若对任意x1,x2∈[-1,1],不等式|f(x1)-f(x2)|≤m恒成立,求m的最小值.

查看答案和解析>>

设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图象在x=m处的切线的斜率为-3a.

(Ⅰ)求证:

(Ⅱ)若函数y=f(x)在区间[s,t]上单调递增,求|s-t|的取值范围;

(Ⅲ)问是否存在实数k(k是与a,b,c,d无关的常数),当x≥k时,恒有恒成立?若存在,试求出k的最小值;若不存在,请说明理由.

查看答案和解析>>

设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图像在x=m处的切线的斜率为-3a.

(1)求证:

(2)若函数y=f(x)在区间[s,t]上单调递增,求|s-t|的取值范围;

(3)问是否存在实数k(k是与a,b,c,d无关的常数),当x≥k时,恒有恒成立?若存在,试求出k的最小值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案