⊙的弦.过C做AD的垂线.垂足为B.CB与⊙相 查看更多

 

题目列表(包括答案和解析)

(几何证明选讲选做题)
如图,AD是⊙O的切线,AC是⊙O的弦,过C做AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AB=   

查看答案和解析>>

(2013•东莞一模)(几何证明选讲选做题)
如图,AD是⊙O的切线,AC是⊙O的弦,过C做AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AB=
3
3

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A、(不等式选讲)若关于x的方程x2+4x+|a-1|=0有实根,则实数a的取值范围为   
B、(几何证明选讲)如图,AD是⊙O的切线,AC是⊙O的弦,过C作AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AC=     
C、(坐标系与参数方程)已知直线(t为参数)与圆相交于A、B两点,则|AB|=   

查看答案和解析>>

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A、(不等式选讲)若关于x的方程x2+4x+|a-1|=0有实根,则实数a的取值范围为________
B、(几何证明选讲)如图,AD是⊙O的切线,AC是⊙O的弦,过C作AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AC=________
C、(坐标系与参数方程)已知直线数学公式(t为参数)与圆数学公式相交于A、B两点,则|AB|=________.

查看答案和解析>>

一、选择题(每小题5分,共40分)

题号

1

2

3

4

5

6

7

8

答案

A

A

C

D

C

A

B

D

二、填空题(每小题5分,共30分)

9.84; 10.;  11.45;  12. -6;  13.;  14.;  15.3

三、解答题(共80分.解答题应写出推理、演算步骤)

16. 解:(1) 

的最小正周期,      ……………………………4分

且当单调递增.

的单调递增区间(写成开区间不

扣分).…………6分

(2)当

,即

所以.      ……………9分

的对称轴.      ……12分

17. 解:(1)依题意,的可能取值为1,0,-1      ………1分

的分布列为            …4分

1

0

p

==…………6分

(2)设表示10万元投资乙项目的收益,则的分布列为……8分

2

…………10分

依题意要求…  11分

………12分   

注:只写出扣1分

18. 解:(1)①当直线垂直于轴时,则此时直线方程为与圆的两个交点坐标为,其距离为   满足题意   ………1分

②若直线不垂直于轴,设其方程为,即     

设圆心到此直线的距离为,则,得  …………3分       

,                                    

故所求直线方程为                               

综上所述,所求直线为   …………7分                  

(2)设点的坐标为),点坐标为

点坐标是                       …………9分

  即    …………11分          

又∵,∴                     

 ∴点的轨迹方程是,               …………13分     

轨迹是一个焦点在轴上的椭圆,除去短轴端点。    …………14分     

19.解一:(1)证明:连结AD1,由长方体的性质可知:

AE⊥平面AD1,∴AD1是ED1在

平面AD1内的射影。又∵AD=AA1=1, 

∴AD1⊥A1D   

∴D1E⊥A1D1(三垂线定理)        4分

(2)设AB=x,∵四边形ADD1A是正方形,

∴小蚂蚁从点A沿长方体的表面爬到

点C1可能有两种途径,如图甲的最短路程为

如图乙的最短路程为

   

………………9

(3)假设存在,平面DEC的法向量

设平面D1EC的法向量,则     

…………………12分

由题意得:

解得:(舍去)

………14分

20. 解:(1)当.…(1分)

           ……(3分)

的单调递增区间为(0,1),单调递减区间为:.

……(4分)

(2)切线的斜率为

∴ 切线方程为.……(6分)

            所求封闭图形面积为

.  

……(8分)

(3),     ……(9分)

            令.                         ……(10分)

列表如下:

x

(-∞,0)

0

(0,2-a)

2-a

(2-a,+ ∞)

0

+

0

极小

极大

由表可知,.           ……(12分)

上是增函数,……(13分)

            ∴ ,即

∴不存在实数a,使极大值为3.            ……(14)

21.解:(1)由   而

  解得A=1……………………………………2分

(2)令  

当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n

综合之:an=2n…………………………………………6分

由题意

∴数列{cn+1}是为公比,以为首项的等比数列。

………………………9分

(3)当

………………………11分

………13分

综合之:

………14分

 

 


同步练习册答案