题目列表(包括答案和解析)
已知向量,且与向量所成角为,其中A,B,C是△ABC的内角。
(1)求角B的大小; (2)求的取值范围
已知向量,且与向量所成角为,其中A,B,C是△ABC的内角。
(1)求角B的大小;
(2)求的取值范围。
已知向量,且与向量所成角为,其中A、B、C是△ABC的内角.
(1)求角B的大小;
(2)求sinA·sinC的取值范围.
(1)求角B的大小;
(2)求sinA+sinC的取值范围.
已知向量=(sinB,1-cosB),且与向量=(2,0)所成角为,其中A、B、C是△ABC的内角。
(1)求角B的大小;
(2)求sinA+sinC的取值范围。
一、选择题 ABCBD DBCDC CC
二、填空题
13.6;;14.;15.,1)∪(1,+∞);16。①③④
三、解答题
17. 解:(1)∵ , 且与向量所成角为
∴ , ∴ ,
又,∴ ,即。
(2)由(1)可得:
∴
∵ ,∴ ,
∴ ,∴ 当=1时,A=
∴AB=2, 则
18.解:(1)P=
(2)随机变量的取值为0, 1, 2, 3.
由n次独立重复试验概率公式得
随机变量的分布列是
0
1
2
3
的数学期望是
19.(I)解:取CE中点P,连结FP、BP,
∵F为CD的中点,∴FP//DE,且FP=
又AB//DE,且AB=,∴AB//FP,且AB=FP,
∴ABPF为平行四边形,∴AF//BP。…………2分
又∵AF平面BCE,BP平面BCE,∴AF//平面BCE。 …………4分
(II)∵△ACD为正三角形,∴AF⊥CD。
∵AB⊥平面ACD,DE//AB,∴DE⊥平面ACD,又AF平面ACD,
∴DE⊥AF。又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE。 …………6分
又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,
∴平面BCE⊥平面CDE。 …………8分
(III)由(II),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F―xyz.设AC=2,
则C(0,―1,0),………………9分
……10分
显然,为平面ACD的法向量。
设平面BCE与平面ACD所成锐二面角为
,即平面BCE与平面ACD所成锐二面角为45°。…………12分
20.(1)
时,,即
当时,
即 在上是减函数的充要条件为 ………(4分)
(2)由(1)知,当时为减函数,的最大值为;
当时,
当时,当时
即在上是增函数,在上是减函数,时取最大值,最大值为即 …(8分)
(3)在(1)中取,即
由(1)知在上是减函数
,即
,解得:或
故所求不等式的解集为[ ……………(12分)
21. 解:(1),,
又,∴数列是首项为,公比为的等比数列.
(2)依(Ⅰ)的结论有,即.
.
.
(3),又由(Ⅱ)有.
则
( ) =
=( 1-)<∴ 对任意的,.
22.解:(I)由条件知: ………2分
得………4分
(II)依条件有:………5分, 由
8分
由,………10分
由弦长公式得
由
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com