(1)求的表达式. 查看更多

 

题目列表(包括答案和解析)

已知

(Ⅰ)若的表达式;

(Ⅱ)若函数f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解析式;

(Ⅲ)若上是增函数,求实数l的取值范围

查看答案和解析>>

已知,

.

(Ⅰ)求的表达式;

(Ⅱ)若函数和函数的图象关于原点对称,

(ⅰ)求函数的解析式;

(ⅱ)若函数在区间上是增函数,求实数l的取值范围.

 

查看答案和解析>>

已知

(Ⅰ)若,求的表达式;

(Ⅱ)若函数和函数的图象关于原点对称,求函数的解析式;

(Ⅲ)若上是增函数,求实数的取值范围.

 

查看答案和解析>>

已知

(Ⅰ)若的表达式;

(Ⅱ)若函数f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解析式;

(Ⅲ)若上是增函数,求实数l的取值范围.

 

查看答案和解析>>

已知,
.
(Ⅰ)求的表达式;
(Ⅱ)若函数和函数的图象关于原点对称,
(ⅰ)求函数的解析式;
(ⅱ)若函数在区间上是增函数,求实数l的取值范围.

查看答案和解析>>

1.      2.     3.    4.   5.    6.(文)(理)

7.     8. 4        9.(文)(理)1     10.      11.

12-15. C  A  A  B

16. (1).   

(2)取的中点,所求的角的大小等于的大小,

,所以与底面所成的角的大小是

17. (1)由函数的图像与x轴的任意两个相邻交点间的距离为得函数周期为,

      直线是函数图像的一条对称轴,

  ,, , .      .  

  (2) 

  ,

即函数的单调递增区间为

18. (1)第天销售的件数为

4月30日的销售件数为

则:

解得,即4月12日的销售量最大,其最大值为25×12-15=285(件)

(2)时,,即未流行

时,

即从4月13日起,社会开始流行.

时,,令,解得

即从4月22日起,社会上流行消失,故流行的时间只有9天.

19. (1)

(2)       妨设在第一象限,则

(3)若直线斜率存在,设为,代入

若平行四边形为矩形,则

无解

若直线垂直轴,则不满足.

故不存在直线,使为矩形.

20. 解:(1)由题意的:f ?1(x)== f(x)=,所以p = ?1,所以an=翰林汇

(2) an=,dn==n,

Sn为数列{dn}的前n项和,Sn=,又Hn为数列{Sn}的调和平均数,

Hn===   ==

(3)因为正数数列{cn}的前n项之和Tn=(cn+),

所以c1=(c1+),解之得:c1=1,T1=1

当n≥2时,cn = Tn?Tn?1,所以2Tn = Tn?Tn?1 +

Tn +Tn?1 = ,即:= n,

所以,= n?1,= n?2,……,=2,累加得:

=2+3+4+……+ n,      =1+2+3+4+……+ n =,Tn=

 


同步练习册答案