(2)设曲线C与y轴的正半轴的交点为M.过点M作一条直线l与曲线C交于另一点N.当|MN|=时.求直线l的方程. 查看更多

 

题目列表(包括答案和解析)

如图,曲线G的方程为y2=2xy≥0).以原点为圆心,以tt >0)为半径的圆分别与曲线Gy轴的正半轴相交于点A与点B.直线ABx轴相交于点C.

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;

(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.

查看答案和解析>>

19.如图,曲线G的方程为y2=2x(y≥0).以原点为圆心,以tt >0)为半径的圆分别与曲线Gy轴的正半轴相交于点A与点B.直线ABx轴相交于点C.

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;

(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.

查看答案和解析>>

如图,曲线G的方程为y2=20(y≥0).以原点为圆心,以tt >0)为半径的圆分别与曲线Gy轴的正半轴相交于点A与点B.直线ABx轴相交于点C.

(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;

(Ⅱ)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值.

查看答案和解析>>

如图,曲线G的方程为y2=2x(y≥0).以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C。
(1)求点A的横坐标a与点C的横坐标c的关系式;
(2)设曲线G上点D的横坐标为a+2,求证:直线CD的斜率为定值。

查看答案和解析>>

(1)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|.
(2)在直角坐标系xOy中,直线L的参数方程为
x=3-
5
5
t
y=-2+
2
5
5
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ.设圆C与直线L交于点A、B.若点P的坐标为(3,-2),求|PA|+|PB|及|PA|•|PB|.

查看答案和解析>>

一. 单项选择题

题号

1

2

3

4

5

6

7

8

9

10

答案

D

A

C

D

B

D

A

B

D

C

二.填空题

11、         12、25           13、         14、

15、29π    

三、解答题:

16、解:(1)

                =…………….4分

的最小正周期为           ……………5分

的对称中心为      …………….6分

(2)   

 ……………..8分

 

      由     ……………10分   

                     ……………….12分

17、解:(1)五项指标检测相当于5次独立重复试验,当有二项及二项以上不合格时,该批食品不能出厂,故不能出厂的概率为:

        ……………………………….4分

(2)若须五项全部检测完毕,才能确定能否出厂,则相当于前四项检测中恰有一项不合格的情形,故所求概率为:

   …………………………………..8分

        (3)由(1)知该批食品能出厂的概率为0.74不能出厂的概率为0.26

          故该厂生产一批食品获利的分布列为

10000

-5000

0.74

0.26

                                                      ….………….10分

获利的期望为 …………..12分

18、解:(1)由已知

   …………2分

    ∴             ……4分

即所求曲线方程是:                           …………6分

(2)由(1)求得点M(0,1)。显然直线l与x轴不垂直。

故可设直线l的方程为y=kx+1 ,设M, N      …………8分

  消去y得:  解得  

解得:k=±1  ………………11分                             …………12分

∴所求直线的方程为                …………14分

19, 解:解法一:(1)∵BF⊥平面ACE。  ∴BF⊥AF

∵二面角D―AB―E为直二面角。且CB⊥AB。

∴CB⊥平面ABE   ∴CB⊥AE   ∴AE⊥平面BCE           ……………4分

(2)连结BD交AC交于G,连结FG

∵正方形ABCD边长为2。∴BG⊥AC  BG=

∵BF⊥平面ACE。  由三垂线定理的逆定理得

FG⊥AC。  ∴∠BGF是二面B―AC―E的平面角              …………7分

由(1)和AE⊥平面BCE

又∵AE=EB

∴在等腰直角三角形AEB中,BE=

又∵Rt△BCE中,

  ∴Rt△BFG中

∴二面角B―AC―E的正弦值等于                        ……………10分

(3)过点E作ED⊥AB交AB于点O,  OE=1

∵二面角D―AB―E为直二面角    ∴EO⊥平面ABCD

设点D到平面ACE的距离为h。   ∵VD-ACE=VE-ACD

即点D到平面ACE的距离为                          ………………14分

 

20、解:(1)由 有唯一解

  

                                 …………4分

(2)由                 …………6分

  

数列 是以首项为,公差为的等差数列          …………8 分

                 ………10分

(3)由       …………12分

=

              

              

                                              …………14分

21、解:2.解:(Ⅰ)由条件得矩阵

它的特征值为,对应的特征向量为

(Ⅱ),椭圆的作用下的新曲线的方程为.(7分)

3.(坐标系与参数方程)求直线)被曲线所截的弦长,将方程分别化为普通方程:

………(4分)

……(7分)

 

 

 

 

 


同步练习册答案