整理得.即为曲线C的方程. 查看更多

 

题目列表(包括答案和解析)

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

已知直线l:
x=1+3t
y=-1-4t
(t为参数),以坐标原点为极点,x轴正半轴为极轴,曲线C的极坐标方程为ρ=
2
cos(θ+
π
4
)

(1)将曲线C的方程化成直角坐标方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
为定值T?指出T的值;
(3)设动点P满足
MP
=
OA
+
OB
,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

(2012•顺义区一模)已知动圆过点M(2,0),且被y轴截得的线段长为4,记动圆圆心的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点M的直线交曲线C于A,B两点,若在x轴上存在定点P(a,0),使PM平分∠APB,求P点的坐标.

查看答案和解析>>


同步练习册答案