已知点A和动点M满足:.且.动点M的轨迹为曲线C.过点B的直线交C于P.Q两点. (1)求曲线C的方程, (2)求△APQ面积的最大值. 查看更多

 

题目列表(包括答案和解析)

(本大题满分12分)
已知点A(-1,0)、B(1,0)和动点M满足:,且,动点M的轨迹为曲线C,过点B的直线交CPQ两点.
(1)求曲线C的方程;
(2)求△APQ面积的最大值.




查看答案和解析>>

(本小题满分12分)

   已知函数f(x)=x3-ax2,其中a为实常数.

   (1)设当x∈(0,1)时,函数y = f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围

  (2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.

 

 

查看答案和解析>>

(本小题满分12分)

   已知函数f(x)=x3-ax2,其中a为实常数.

   (1)设当x∈(0,1)时,函数y = f(x)图象上任一点P处的切线的斜线率为k,若k≥-1,求a的取值范围

  (2)当x∈[-1,1]时,求函数y=f(x)+a(x2-3x)的最大值.

 

 

查看答案和解析>>

(本小题满分12分)已知双曲线C:=1(a>0,b>0)的一条准线方程为x=,一个顶点到一条渐近线的距离为.
(1)求双曲线C的方程;
(2)动点P到双曲线C的左顶点A和右焦点F的距离之和为常数(大于|AF|),且cosAPF的最小值为-,求动点P的轨迹方程.

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

一.选择题:DCBBA  DACCA

二.填空题:11.4x-3y-17 = 0  12.33  13.
      14.  15.

三.解答题:

16.(1)解:∵                                  2分
∴由得:,即              4分
又∵,∴                                                                                    6分

(2)解:                                    8分
得:,即          10分
两边平方得:,∴                                          12分

17.方法一

(1)证:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角          6分
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小为45°              8分

(3)解:过点B作BH⊥AC,垂足为H,连结DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH为BD与平面ACD所成的角           10分
设AB = a,在Rt△BHD中,

,∴                                                                                        12分

方法二
(1)同方法一                                                                                                               4分
(2)解:设以过B点且∥CD的向量为x轴,为y轴和z轴建立如图所示的空间直角坐标系,设AB = a,则A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
平面ABC的法向量 = (1,0,0)
设平面ABD的一个法向量为n = (x,y,z),则

n = (1,-1,0)                           6分

∴二面角C-AB-D的大小为45°                                                                           8分

(3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
设平面ACD的一个法向量是m = (x,y,z),则
∴可取m = (0,a,1),设直线BD与平面ACD所成角为,则向量、m的夹角为
                                                                        10分

,∴                                                                                        12分

18.解:该商场应在箱中至少放入x个其它颜色的球,获得奖金数为
= 0,100,150,200

                        8分
的分布列为

0

100

150

200

P

 

19.(1)解:设M (x,y),在△MAB中,| AB | = 2,

                        2分
因此点M的轨迹是以A、B为焦点的椭圆,a = 2,c = 1
∴曲线C的方程为.                                                                                4分

(2)解法一:设直线PQ方程为 (∈R)
得:                                                            6分
显然,方程①的,设P(x1,y1),Q(x2,y2),则有

                                                           8分
,则t≥3,                                                             10分
由于函数在[3,+∞)上是增函数,∴
,即S≤3
∴△APQ的最大值为3                                                                                              12分

解法二:设P(x1,y1),Q(x2,y2),则
当直线PQ的斜率不存在时,易知S = 3
设直线PQ方程为
  得:  ①                                         6分
显然,方程①的△>0,则
                                    8分
                                10分
    
,则,即S<3

∴△APQ的最大值为3                                                                                              12分

20.(1)解:∵
                                                                         2分
时,
∵当时,,此时函数递减;
时,,此时函数递增;
∴当时,F(x)取极小值,其极小值为0.                                                          4分

(2)解:由(1)可知函数的图象在处有公共点,
因此若存在的隔离直线,则该直线过这个公共点.
设隔离直线的斜率为k,则直线方程为,即              6分
,可得时恒成立
得:                                                                              8分
下面证明时恒成立.

,                                                                           10分
时,
∵当时,,此时函数递增;
时,,此时函数递减;
∴当时,取极大值,其极大值为0.                                                        12分
从而,即恒成立.
∴函数存在唯一的隔离直线.                                              13分

21.(1)解:记
令x = 1得:
令x =-1得:
两式相减得:
                                                                                                        2分
当n≥2时,
当n = 1时,,适合上式
                                                                                                 4分

(2)解:
注意到                               6分



,即                                             8分

(3)解:
    (n≥2)                                                                        10分

         12分

                                                       14分

 

 

 


同步练习册答案