3.[解析]A. .故选A. 查看更多

 

题目列表(包括答案和解析)

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

【解析】若,必有.构造函数:,则恒成立,故有函数x>0上单调递增,即ab成立.其余选项用同样方法排除.

【答案】A

查看答案和解析>>

过平行六面体ABCDA1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有(  )

A.4条          B.6条 

C.8条          D.12条

[答案] D

[解析] 如图所示,设MNPQ为所在边的中点,

则过这四个点中的任意两点的直线都与面DBB1D1平行,这种情形共有6条;同理,经过BCCDB1C1C1D1四条棱的中点,也有6条;故共有12条,故选D.

查看答案和解析>>

已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {}的前n项和为(  )

 

A.

B.

C.

D.

考点:

数列的求和;等差数列的性质.

专题:

等差数列与等比数列.

分析:

利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 {}的前n项和.

解答:

解:∵Sn=4n+=2n2+2n,

∴数列 {}的前n项和===

故选A.

点评:

熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键.

查看答案和解析>>


同步练习册答案