(2)因为在上单调递增. 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)若函数在其定义域内为单调递增函数,求实数的取值范围。

(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。

【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。

解:(1)

因为在其定义域内的单调递增函数,

所以 内满足恒成立,即恒成立,

亦即

即可  又

当且仅当,即x=1时取等号,

在其定义域内为单调增函数的实数k的取值范围是.

(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设

 上的增函数,依题意需

实数k的取值范围是

 

查看答案和解析>>

已知

(1)求函数上的最小值

(2)对一切的恒成立,求实数a的取值范围

(3)证明对一切,都有成立

【解析】第一问中利用

时,单调递减,在单调递增,当,即时,

第二问中,,则

单调递增,单调递减,,因为对一切恒成立, 

第三问中问题等价于证明

由(1)可知的最小值为,当且仅当x=时取得

,则,易得。当且仅当x=1时取得.从而对一切,都有成立

解:(1)时,单调递减,在单调递增,当,即时,

                 …………4分

(2),则

单调递增,单调递减,,因为对一切恒成立,                                             …………9分

(3)问题等价于证明

由(1)可知的最小值为,当且仅当x=时取得

,则,易得。当且仅当x=1时取得.从而对一切,都有成立

 

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数(  )

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数( )
A.4
B.3
C.2
D.1

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数( )
A.4
B.3
C.2
D.1

查看答案和解析>>


同步练习册答案