22(理).已知椭圆的离心率为.直线:与以原点为圆心.以椭圆的短半轴长为半径的圆相切. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的离心率e=
2
2
,一条准线方程为x=4,P为准线上一动点,以原点为圆心,椭圆的焦距|F1F2|为直径作圆O,直线PF1,PF2与圆O的另一个交点分别为M,N.
(1)求椭圆的标准方程;
(2)探究直线MN是否经过一定点,若存在,求出该点坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆的离心率e=
2
2
,一条准线方程为x=4,P为准线上一动点,以原点为圆心,椭圆的焦距|F1F2|为直径作圆O,直线PF1,PF2与圆O的另一个交点分别为M,N.
(1)求椭圆的标准方程;
(2)探究直线MN是否经过一定点,若存在,求出该点坐标,若不存在,说明理由.

查看答案和解析>>

已知椭圆的一个焦点F1(0,-2
2
)
,对应的准线方程为y=-
9
4
2
,且离心率e满足
2
3
,e,
4
3
成等比数列.
(1)求椭圆的方程;
(2)试问是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
1
2
平分?若存在,求出l的倾斜角的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线x-y+2
2
=0
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为k(k≠0),且过定点Q(0,
3
2
)
的直线l,使l与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

已知椭圆Γ的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线y=
1
4
x2
的焦点,离心率等于
2
2
.直线l与椭圆Γ交于M,N两点.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)椭圆Γ的右焦点是否可以为△BMN的重心?若可以,求出直线l的方程;若不可以,请说明理由.

查看答案和解析>>

 

 

一、选择题:(1)-(12)CAADB  BAACD  CA

二、填空题:(13)  (14)  (15)  (16)

三、解答题:

(17)解:(1)                                   …………6分

(2)                 …………8分

 时,

时,

时,……11分

综上所述:………………12分

(18)解:(1)每家煤矿必须整改的概率1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是

                   ………………4分

(2)由题设,必须整改的煤矿数服从二项分布,从而的数学期望是

,即平均有2.50家煤矿必须整改.       ………………8分

(3)某煤矿被关闭,即煤矿第一次安检不合格,整改后复查仍不合格,所以该煤矿被关闭的概率是,从而该煤矿不被关闭的概率是0.9,由题意,每家煤矿是否关闭是相互独立的,所以5家煤矿都不被关闭的概率是

从而至少关闭一家煤矿的概率是          ………………12分

(19)证明:由多面体的三视图知,四棱锥的底面是边长为的正方形,侧面是等腰三角形,

且平面平面.……2分

(1)      学科网(Zxxk.Com)连结,则的中点,

在△中,,………4分

   且平面平面

 ∴∥平面  ………6分

(2) 因为平面⊥平面

平面∩平面

 又,所以,⊥平面

…………8分

,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面

平面

所以  平面⊥平面  ………………12分

(20)解:设

              ………………6分

(2)由题意得上恒成立。

在[-1,1]上恒成立。

其图象的对称轴为直线,所以上递减,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,数列                        …………6分

   (II)由得:

                                                                                

     …………(1)                            

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直线相切,

   ∴    …………3分

∵椭圆C1的方程是     ………………6分

(Ⅱ)∵MP=MF2

∴动点M到定直线的距离等于它到定点F1(1,0)的距离,

∴动点M的轨迹是C为l1准线,F2为焦点的抛物线  ………………6分

∴点M的轨迹C2的方程为    …………9分

(Ⅲ)Q(0,0),设 

 

,化简得

    ………………11分

当且仅当 时等号成立   …………13分

∴当的取值范围是

……14分

 

 

 


同步练习册答案