19. 故当n充分大时.的值的符号与的值的符号相同.即数列的项的值是正负相间出现的.故数列不可能是单调数列. 综上所述.当且仅当时.数列是递增数列. 中 查看更多

 

题目列表(包括答案和解析)

设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=(  )  当n>4时,f(n)=(  )

查看答案和解析>>

某个命题与正整数有关,如果当n=k(k∈N*)时,该命题成立,那么可推得n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得(  )

A.当n=6时该命题不成立

B.当n=6时该命题成立

C.当n=4时该命题不成立

D.当n=4时该命题成立

查看答案和解析>>

已知数列满足:,且当n≥5时,,若数列满足对任意,有,则b5=            ;当n≥5时,           

 

查看答案和解析>>

用数学归纳法证明1+a+a2+…+an+1= (nN*,a≠1)时,在验证n=1成立时,左边应为某学生在证明等差数列前n项和公式时,证法如下:

(1)当n=1时,S1=a1显然成立;

(2)假设当n=k时,公式成立,即Sk=ka1+,

n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d

n=k+1时公式成立.

由(1)(2)知,对nN*时,公式都成立.

以上证明错误的是(  )

A.当n取第一个值1时,证明不对

B.归纳假设的写法不对

C.从n=kn=k+1时的推理中未用归纳假设

D.从n=kn=k+1时的推理有错误

查看答案和解析>>

某人用数学归纳法证明命题

<n+1(n∈N)的过程如下:

(1)当n=1时, 不等式显然成立.

(2)假设n=k时, 有<k+1

那么n=k+1时, =(k+1)+1.

所以n=k+1时不等式成立. 由(1), (2), ∴对n∈N不等式成立.这种证法的主要错误在于

[  ]

A.当n=1时, 验证过程不具体.

B.归纳假设的写法不正确.

C.从k到k+1的推理不严密.

D.从k到k+1的推理过程没使用归纳假设.

查看答案和解析>>


同步练习册答案