些问题 例4:集合A中的元素由x=a+b(a∈Z,b ∈Z)组成.判断下列元素与集合A的 关系? (3) 分析:先把x写成a+b的形式.再观察 a.b是否为整数. [解] (1)因为.所以 (2)因为. 所以 (3)因为. 所以 点评: 要判断某个元素是否是某个集合的元 素.就是看这个元素是否满足该集合 的特性或具体表达形式. 例5:不包含-1.0.1的实数集A满足条件a∈A.则∈A.如果2∈A,求A中的元素? 分析:该题的集合所满足的特征是由抽象的 语句给出的.把2这个具体的元素代入求出A的另一个元素.但该题要循环代入.求出其余的元素.同学们可能想不到. [解] ∵ 2∈A ∴ -3∈A ∵ -3∈A ∴ ∈A ∵ ∈A ∴ ∈A ∵ ∈A ∴ 2∈A 综上所述.集合A中的元素为: 2.-3.. 追踪训练1.下列研究的对象能否构成集合 ① 某校个子较高的同学, ② 倒数等于本身的实数 ③ 所有的无理数 ④ 讲台上的一盒白粉笔 ⑤中国的直辖市 ⑥中国的大城市 查看更多

 

题目列表(包括答案和解析)

,命题:1是集合中的元素,命题:4是集合中的元素。则在下列命题:①中,真命题的个数是:(     )

A.1个     B.2个     C.3个      D.4个

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:

①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.

(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;

(2)集合M中的元素f(x)具有下列性质:

    若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.

请利用这一性质证明:方程f(x)-x=0有唯一的实数根;

(3)若存在实数x1,使得M中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立,证明:|f(b)-f(a)|<2.

查看答案和解析>>

已知M是由满足下述条件的函数构成的集合:对任意f(x)∈M,①方程f(x)-x=0有实数根;②函数f(x)的导数满足

(Ⅰ)判断函数是否是集合M中的元素,并说明理由;

(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意,都存在x0∈(m,n),使得等式成立.试用这一性质证明:方程f(x)-x=0有且只有一个实数根;

(Ⅲ)对任意f(x)∈M,且x∈(a,b),求证:对于f(x)定义域中任意的x1,x2,x3,当,且时,

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:

①方程f(x)-x=0有实数根;②函数f(x)的导函数f′(x)满足0<f′(x)<1.

(1)判断函数f(x)=x+sinx是否是集合M中的元素,并说明理由;

(2)集合M中的元素f(x)具有下列性质:

若f(x)的定义域为I,则对于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.

    请利用这一性质证明:方程f(x)-x=0有唯一的实数根;

(3)若存在实数x1,使得m中元素f(x)定义域中的任意实数a、b都有|a-x1|<1和|b-x1|<1成立.证明:|f(b)-f(a)|<2

查看答案和解析>>

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”

(Ⅰ)判断函数f(x)=+是否是集合M中的元素,并说明理由;

(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,试用这一性质证明:方程f(x)-x=0只有一个实数根;

(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.

查看答案和解析>>


同步练习册答案