函数()的图象是由函数的图象当时先向左平移 b个单位.再向上平移c 个单位得到; 当时先向右平移| b|个单位.再向上平移c 个单位得到; 当时先向左平移 b个单位.再向下平移|c |个单位得到; 当时先向右平移| b|个 单位.再向下平移|c| 个单位得到. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx-
1
2
ax2+bx(a>0),且f′(1)=0
(1)试用含有a的式子表示b,并求f(x)的单调区间;
(2)设函数f(x)的最大值为g(a),试证明不等式:g(a)>ln(1+
a
2
)-1
(3)首先阅读材料:对于函数图象上的任意两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数图象上存在点M(x0,y0)(x0∈(x1,x2)),使得f(x)在点M处的切线l∥AB,则称AB存在“相依切线”特别地,当x0=
x1+x2
2
时,则称AB存在“中值相依切线”.请问在函数f(x)的图象上是否存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由.

查看答案和解析>>

(9分)已知函数.

(1)用五点法画出它在一个周期内的闭区间上的图象;

(2)当时,函数的图象与x轴围成草垛型平面区域,为了估算该区域的面积,采用计算机随机模拟试验,先产生0~2之间的均匀随机数A, 0~1之间的均匀随机数B,再判断是否成立. 我们做2000次试验,得到1273次,由此试估算该草垛型平面区域的面积(结果保留两位小数).

            

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

 已知函数.

(1)用五点法画出它在一个周期内的闭区间上的图象;

(2)当时,函数的图象与x轴围成草垛型平面区域,为了估算该区域的面积,采用计算机随机模拟试验,先产生0~2之间的均匀随机数A, 0~1之间的均匀随机数B,再判断是否成立. 我们做2000次试验,得到1273次,由此试估算该草垛型平面区域的面积(结果保留两位小数).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(9分)已知函数.
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)当时,函数的图象与x轴围成草垛型平面区域,为了估算该区域的面积,采用计算机随机模拟试验,先产生0~2之间的均匀随机数A, 0~1之间的均匀随机数B,再判断是否成立. 我们做2000次试验,得到1273次,由此试估算该草垛型平面区域的面积(结果保留两位小数).

查看答案和解析>>


同步练习册答案