例5.求函数的定义域. [解]由.得.∴且.即函数的定义域为. 思维点拨 求函数定义域.不能先化简函数表达式.否则容易出错.如例5.若先化简得,此时求得的定义域为显然是错误的. 追踪训练二1.若.则 2 , 查看更多

 

题目列表(包括答案和解析)

 如果定义域为的函数同时满足以下三个条件:

① 对任意的,总有≥0;

③若,则有成立。

那么称为“友谊函数”。

请解答下列各题:

   (1)若已知为“友谊函数”,求的值;

   (2)函数在区间上是否为“友谊函数”?并给出理由.

   (3)已知为“友谊函数”,假定存在,使得,求证:

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分14分)已知函数的图象在点处的切线的斜率为,且在处取得极小值。

(1)求的解析式;

(2)已知函数定义域为实数集,若存在区间,使得的值域也是,称区间为函数的“保值区间”.

①当时,请写出函数的一个“保值区间”(不必证明);

②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分14分)已知函数的图象在点处的切线的斜率为,且在处取得极小值。
(1)求的解析式;
(2)已知函数定义域为实数集,若存在区间,使得的值域也是,称区间函数的“保值区间”.
①当时,请写出函数的一个“保值区间”(不必证明);
②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>


同步练习册答案